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Abstract 
The standard semen analysis is the first line and the most popular laboratory 
test in the diagnosis of male fertility. It evaluates sperm concentration, 
motility, morphology and their vitality. However, it is well-known that normal 
results of semen analysis can not exclude men from the causes of couples′ 
infertility. One of the most important parameters of sperm in its fertilizing 
potential is "Sperm chromatin integrity" that has direct positive correlation 
with Assisted Reproductive Techniques (ART) outcomes including; fertilization 
rate, embryo quality, pregnancy and successful delivery rate. It seems that 
sperm DNA chromatin integrity provides better diagnostic and prognostic 
approaches than standard semen parameters. For these reasons under-
standing the sperm chromatin structure, etiology of sperm chromatin abnor-
mality, identification factors that disturbs sperm chromatin integrity and the 
mechanism of their action can help in recognizing the causes of couples′ 
infertility. Various methods of its evaluation, its importance in male fertility, 
clinical relevance in the outcomes of ART and application of laboratory and 
medical protocols to improve this integrity have valuable position in diagnosis 
and treatment of male infertility. There has recently been interest in the 
subject and its application in the field of andrology. Therefore, with regard to 
the above mentioned importance of sperm chromatin integrity, this review 
article describes details of the useful information pertaining to sperm DNA 
damage including the origins, assessments, etiologies, clinical aspects, and 
prevention of it. 
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Introduction 
Infertility is a major problem in 15-20% of 

couples trying to conceive in the reproductive 
ages (1). Male infertility may contribute in half 
of all couples who refer to infertility clinics (2).  

The standard semen analysis is the first line 
and the most popular laboratory test in the 
diagnosis of male fertility. It evaluates sperm 
concentration, motility, morphology and vital-
ity. However, it is well-known that normal 
results of semen analysis can not exclude men 
from causes of couples′ infertility (3).  

 
Today, it is well known that the quality and 

integrity of sperm chromatin is very important 
in the reproductive potential of men. Sperm 
DNA is known to contribute to half of the 
genomic material of the embryo. Sperm chro-
matin is much more compact in somatic cells, 
with the aim of protecting the paternal genetic 
materials against damaging factors during its 
passage from testis as production site to 
fallopian tubes as final destination (4).  

It is a fact that normal sperm genomic 
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material is required for a normal fertilization, 
pregnancy, live birth, and postnatal child well 
being. Therefore, abnormal sperm chromatin 
may result in male sub-fertility or even infer-
tility, recurrent abortion, increased congenital 
anomalies and testicular cancer in offsprings 
(5). Thus, more knowledge on sperm chro-
matin damage including: etiology, mechan-
ism, detection methods, clinical outcomes and 
treatment may provide better diagnostic and 
prognostic capabilities than standard sperm 
parameters for both in vivo and in vitro fertil-
izing ability of human spermatozoa (6).  
 

Etiology of sperm chromatin damage 
Many factors are involved in inducing 

sperm DNA damage, which may result in the 
male infertility. One of these factors is Leuko-
cytospermia (7), which is the increase of leuko-
cytes in semen due to genital infection and/or 
inflammation (8).  

Leukocytospermia could result in the pro-
duction of inflammatory cytokines followed 
by the overproduction of Reactive Oxygen 
Species (ROS) leading to increase in sperm 
DNA damage (9,10). Cigarette smokes also in-
duce leukocytospermia and ROS overproduc-
tion (11-13). It seems that leukocytes can gener-
ate high levels of ROS in semen, which may 
overwhelm the antioxidant capacity of semen 
and resultant Oxidative Stress (OS) could dis-
turb sperm functions (14, 15).   

Also, some of the sperm preparation and 
cryopreservation protocols could decrease 
sperm chromatin integrity (16,17). It has been 
shown that rapid and ultra rapid freezing 
(flash-freezing in liquid nitrogen) induce the 
least damage to sperm during cryopreserva-
tion (18). Malignancies such as leukemia, 
Hodgkin’s disease, and testicular malign-
nancies could affect sperm chromatin integ-
rity by themselves or following their treat-
ment with cytotoxic drugs and/ or radiation 
therapy (19-22). 

Many drugs might also affect the semen 
quality and increase sperm DNA damage  

(23-25). Even some types of herbal remedies 
may induce sperm DNA damage. For ex-
ample high dose administration of Gingko 

biloba, St. John's wort and Echinacae purpura 
were associated with increased damage of the 
reproductive cells (26).  

Finally, a growing body of evidences 
shows that environmental and occupational 
exposures to chemical agents, heat, and agri-
cultural toxins could play a role in sperm 
DNA damage (10). In a recent study, it has 
been shown that increased scrotal heat not 
only reduces the quality of semen parameters, 
but also compromises sperm chromatin integ-
rity (27).  
 

Mechanism of Sperm DNA Damage 
While the exact causes of sperm DNA 

damage have not yet been fully elucidated, 
several interrelated mechanisms have been 
suggested (28-30). These mechanisms are cat-
egorized as abnormal chromatin packaging, 
apoptosis and oxidative stress.  
 

Abnormal chromatin packaging 
The sperm chromatin is an extremely 

compact and stable structure which must be 
organized in a specific manner to achieve this 
unique condensed state (31). This DNA organ-
ization provides more safe and secure transfer 
of paternal genetic information to the egg and 
next generation. Sperm chromatin is organ-
ized in a manner completely different from 
that of somatic cells (32, 33).  

During changes in sperm chromatin com-
paction, histones are replaced by transition 
proteins. These proteins are then replaced by 
more basic proteins named protamine (P1,P2), 
which are responsible for the final condensa-
tion and stabilization of sperm DNA (34). 
Sperm DNA interacts with protamines so that 
it converts the coiling of sperm DNA into 
toroidal subunits so called as "Doughnut 
loops" (35).  

Although defects can arise at any stage of 
this process, the most common problems are 
due to abnormal DNA loop domain formation 
and histon-protamine replacement (34).  

DNA loop domains are arranged by endo-
genous nicks. It is believed that these nicks 
are needed to reduce the torsional stress. 
These nicks are mainly produced during tran-
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sition from round to elongated spermatids in 
the testis and occur before complete pro-
tamination of sperm nuclei. These loop do-
mains are created and ligated by topoiso-
merase II during this process (36,37).  

Thus, the enzyme disturbance can result in 
defect in packaging of sperm DNA and may 
be contribute to male infertility. It is sug-
gested that enzyme inhibitors might increase 
the levels of internal DNA breaks by prevent-
ing their repair and increasing their suscepti-
bility to damage (38).  

The histones should be replaced by pro-
tamines during sperm DNA packaging for 
more chromatin condensation (39). Human 
sperm has 2 different types of protamines in 
equal amounts: P1 and P2 (40). Recent studies 
indicate that the ratio of P1 to P2 is critical for 
sperm’s fertilization ability (39-41). Also, it has 
been shown that P2 precursors (pre-P2) play a 
pivotal role in maintaining this ratio. Any 
defect in pre-P2 mRNA translation appears to 
cause abnormal sperm morphogenesis, re-
duced sperm motility, and subsequent male 
infertility (42,43). Moreover, the chromatin sta-
bility depends on the number of disulfide 
cross-links between thiol groups of adjacent 
protamine chains (34, 44).  

More recent data indicate that the stabiliza-
tion of chromatin begins in the testis and con-
tinues during its passage through the epidid-
ymis (44). As sperm migrates along the epidid-
ymis, cysteine sulfhydryl groups in testicular 
sperm are progressively oxidized to disulfide 
bounds that increases compaction of DNA-
protamine complex (4,45,46). Disturbance at any 
stage of this process can lead to permanent 
defects in sperm chromatin. 
 

Apoptosis 
A number of studies have proposed that the 

presence of spermatozoa containing apoptosis 
signals such as damaged DNA is indicative of 
escaping sperm of the apoptosis process, 
which is referred to as "abortive apoptosis" 
(47).  

Spermatogonial stem cells proliferate 
clonally during mitoses before undergoing the 
differentiation steps. This proliferation is ex-

cessive and needs a mechanism such as apo-
ptosis to match the number of them with the 
supportive capacity of sertoli cells (48). There- 
fore, apoptosis is a vital mechanism to control 
the over production of sperm (49).  

Pathways involving the cell-surface protein 
Fas may mediate apoptosis in sperm (50-52). 
Thus, the Fas positive germ cells will be 
killed by apoptosis to reduce their population. 
The number of Fas positive spermatozoa is 
very small in fertile men. However, Fas-posi-
tive spermatozoa may consist half of the 
sperm in men with abnormal semen para-
meters. Thus the correct clearance of sperm-
atozoa via apoptosis has not occurred, and the 
presence of spermatozoa with apoptotic mark-
ers such as Fas molecules and DNA breakage, 
indicates an “abortive apoptosis” in these men 
(53).  

Another main component of apoptotic path-
ways are caspases enzymes (54). Caspases 8 
and 9 are activated via Fas ligand/ Fas liga-
tion in the inner layer of mitochondrial mem-
brane. Following activation, they conduct a 
signal to their effector such as caspase 3, 
which activate the caspase-activated DNAse 
resulting in degradation of sperm DNA, and 
apoptosis (55).  

Finally, telomere shortening is another in-
ducer of apoptotic pathway which can con-
tribute to the abortive apoptosis theory (56).  
 

Oxidative stress 
The most common cause of sperm DNA 

damage is Oxidative Stress (OS) (57-59). OS is 
an imbalance between the formation of 
Reactive Oxygen Species (ROS) and the cap-
acity of antioxidant scavengers to neutralize 
or eliminate them. The ROS might damage 
DNA through modification or deletions of 
bases, frame shifts, DNA cross linkages, chro-
mosomal rearrangement, single and double 
strand DNA breaks, and gene mutations (60-62).  

ROS are produced in sperm through leak-
age of electrons from the mitochondrial elec-
tron transport chain (63), NADPH oxidase (64) 

and generation of nitric oxide (NO) (65). The 
origin of ROS may be from the outside of the 
sperm and even from the outside of the body. 
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The extrinsic sources of ROS include: cigar-
ette smoking, increased scrotal temperature, 
electromagnetic radiations (cell phone), and 
organophosphorous pesticides (66). 

An increased level of ROS via damaging 
the inner and outer mitochondrial membranes, 
is the main inducer of apoptosis in spermato-
genic cells (66). 
 

Assay of sperm chromatin integrity 
Several methods have been developed to 

evaluate sperm DNA or chromatin integrity 
(67,68). A number of methods only detect break-
age in single or double strands of sperm 
DNA. In contrast other methods are based on 
the fact that defects in the sperm chromatin 
structure have been associated with increase 
DNA instability and sensitivity to denaturing 
stress. Therefore these methods provide dena-
turation condition and the subsequent assess-
ment of the sperm chromatin ability to main-
tain its integrity. Most of these methods are 
based on the staining of pre-treated spermato-
zoa by fluorescent or non-fluorescent dye 
staining. Detection of stained or unstained 
spermatozoa may be done by light or fluores-
cent microscopy. Since observational evalu-
ations by individuals have too high inter-
assay and intra-assay coefficient variation 
(69,70), recently most of the evaluations particu-
larly for fluorescent dyes, are based on auto-
mated instruments such as flowcytometry. 
 

Acidic aniline blue staining  
The Acidic Aniline Blue (AAB) stain dis-

criminates between lysine-rich histones and 
arginine/ cysteine-rich protamines. This stain 
specifically reacts with lysine residues in 
nuclear histones and reveals differences in the 
basic nuclear protein composition of the 
sperm. Histone-rich nuclei of immature sperm 
are rich in lysine and will consequently take 
up the blue stain. On the other hand, pro-
tamine rich nuclei of mature spermatozoa are 
rich in arginine and cysteine and contain rela-
tively low levels of lysine, which means they 
will not be stained by Aniline blue (71).  

Results of AAB have a negative correlation 
with sperm chromatin integrity and male 
fertility potential (72). However, there is a 

controversy on the correlation between the 
percentage of Aniline blue-stained spermato-
zoa and other sperm parameters that need to 
be further evaluated. 
 

Toluidine blue staining 
Toluidine Blue (TB) is a basic nuclear dye 

used for metachromatic and orthochromatic 
staining of chromatin. This stain is a sensitive 
structural probe for DNA. Due to the coopera-
tive nature of metachromatic stain which is 
indicative only in severe DNA damaged con-
ditions, it is revealed in only poor sperm DNA 
integrity. Therefore, TB staining should be 
used in combination with other more reliable 
staining methods for the assessment of sperm 
chromatin integrity (73). 

In general, the AAB and TB are two simple 
and cheap methods that have the advantage of 
providing suitable slides for use on a light 
microscope (74). The smears stained with the 
TB method can also be used for assessment of 
sperm morphology. However, these methods 
have the inherent limits of repeatability due to 
dye balance differences and a low number of 
sperm which can be reasonably counted (74). 
 

Chromomycin A3 staining  
Chromomycin A3 (CMA3) is a guanine-

cytosine-specific fluorochrome and indicative 
of poor chromatin packaged in human sperm 
via indirect counting of protamine-deficient 
sperm. Chromomycin A3 and protamines 
compete for the same binding sites in the 
DNA. Therefore, high CMA3 stained sperma-
tozoa is a strong indicator of the defects in 
protamination (75). 

As a discriminator of ART success rate, 
CMA3 method has a sensitivity of 73% and 
specificity of 75%. Therefore, it may provide 
a prognosis on the success of ART (76). 
 

DNA Breakage Detection-Fluorescent In Situ 
Hybridization (DBD-FISH) 

In this assay, sperm was placed within an 
agarose gel on a slide that was exposed to an 
alkaline condition, which converts DNA-
strand breakages into single-stranded DNA 
(ssDNA) motifs. After neutralizing and 
proteins extruding, ssDNA is available for 
hybridization with specific DNA probes. The 

D
ow

nloaded from
 http://w

w
w

.ajm
b.org

http://www.ajmb.org


Hekmatdoost A, et al 

 Avicenna Journal of Medical Biotechnology, Vol. 1, No. 3, October-December 2009 151 

probe indicates the chromatin area to be 
analyzed.  

As DNA breakages increase, more ssDNA 
is created by the alkaline condition and more 
probe hybridizes, which leads to an increase 
in the fluorescence strength and surface area 
of the fluorescent in situ hybridization (FISH) 
signal. Defects in sperm chromatin packaging 
significantly increase the availability of DNA 
ligands and the sensitivity of DNA to denatur-
ation by alkaline condition. Therefore, DBD-
FISH used for in situ evaluation and quantify-
cation of DNA breakages, brings to light the 
structural aspects of the sperm chromatin  
(77, 78). 

Although this method shows structural 
aspects of sperm chromatin, it is expensive 
and time-consuming. In addition this assay 
has less clinical value and its results are not 
superior to the other methods (78). 
 

In situ nick translation  
The Nick Translation (NT) method meas-

ures the insertion of biotinylated deoxyuridine 
triphosphate (dUTP) at single strand DNA 
breakages that is catalyzed by DNA poly-
merase I. It particularly stains spermatozoa 
with considerable quantity of endogenous 
DNA breakage. The NT method shows abnor-
malities that have risen during remodeling of 
the sperm chromatin. As a result most of these 
anomalies have not been shown by standard 
semen analysis such as sperm morphology (79). 

Application of NT assay shows an associ-
ation between sperm chromatin integrity and 
sperm motility and morphology and to a 
lesser extent, sperm concentration. The NT 
method is used for detection of sperm DNA 
damage arising from causes such as heat ex-
posures or the production of ROS following 
leukocytospermia and contact of sperm with 
leukocytes within the urogenital tract of men 
(79). The benefit of the NT method is direct 
labeling of the DNA breakage sites, and 
consequently the breakage sites are detectable 
at the molecular level (80). 
 

Acridine Orange staining  
The Acridine Orange (AO) staining as a 

fluorochrome measures the susceptibility of 

sperm DNA to acid-induced denaturation and 
subsequently shifts of AO fluorescence from 
green (double strand) to red (single strand). 
AO interacts with double-stranded DNA as a 
monomer; however it binds to single-stranded 
DNA as an aggregate. The monomeric AO 
binding to native double strand DNA emits 
green fluoresces, while the denatured DNA 
binds to aggregated AO and produces red 
fluoresces (81).  

The AO assay, also named as Sperm 
Chromatin Structure Assay (SCSA), is a 
functional assay that measures sperm quality. 
The variation of its results between different 
individuals (inter-assay) and between several 
assays (intra-assay) for the same sample is 
very high. If the inter-assay coefficient vari-
ations of AO staining method were less than 
5%, it is rendered as a highly reproducible 
technique.  

To increase the accuracy and precision of 
AO staining results for sperm chromatin, 
there is a need for more expensive instrumen-
tation such as flowcytometer to differentiate 
different colors and interpret the results. Also, 
individual subjectivity may hinder the results 
if fluorescent microscopy is used (82). Since 
the SCSA is highly constant over a long 
period of time as compared to the standard 
parameters of semen analysis, it may be 
applied successfully in the epidemiological 
studies in the field of andrology (83).  
 

Sperm chromatin dispersion  
The Sperm Chromatin Dispersion (SCD) test 

is based on this fact that when sperm are 
exposed to an acid solution prior to lysis 
following the removal of nuclear proteins, the 
DNA dispersion halos will be observed. It   
presents minimally in sperm chromatin with-
out DNA fragmentation or not produced at all 
in sperm chromatin with fragmented DNA (84). 
The major advantage of the SCD test besides 
the above mentioned methods is that it does 
not need to detect the color or fluorescence 
intensity. Furthermore, the test is easy, fast, 
and reproducible and its results are as good as 
to those of the SCSA (85). 
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Comet assay 
The comet assay is a single-cell gel electro-

phoresis for detection of DNA fragmentation 
in a single cell (86). In this assay, sperms are 
stained with a Fluorochrome that binds to 
DNA. During electrophoresis, the movement 
of fragmented double-stranded DNA from a 
damaged sperm chromatin becomes visible as 
a comet with a tail (86). Singh et al modified 
the comet assay in 1988 (87) by performing 
electrophoresis under alkali buffers to expose 
alkali-labile sites on the DNA. This alteration 
changed the sensitivity of the assay for detec-
tion of both single and double-stranded DNA 
breakages (88). Recently using particular soft-
ware the amount of fragmentations is quan-
tified by measuring the displacement between 
the nucleus "comet head" and the resulting 
tail. The tail lengths are used as an index for 
the intensity of DNA fragmentation. How-
ever, determination of both intensity and 
length of the tail defines it more precisely (89). 

This method is fruitfully used in the 
evaluation of DNA fragmentation after cryo-
preservation (90). It may also prognoses the 
success of IVF and ICSI, and embryo quality 
on the base of sperm chromatin integrity par-
ticularly in couples with idiopathic infertility 
(91, 92). 

The comet is a well-standardized assay that 
correlates significantly with TUNEL and 
SCSA methods (93). It is simple to perform, has 
a low intra-assay coefficient of variation, and 
not expensive (68). It is based on fluorescent 
microscopy, therefore, it requires a well ex-
perienced individual to examine the slides and 
interpret the results. 
 

Terminal deoxynucleotidyl transferase-mediated 
deoxyuridine Triphosphate-Nick End Labeling 
(TUNEL) assay 

Terminal deoxynucleotidyl transferase me-
diated deoxyuridine Triphosphate-Nick End 
Labeling (TUNEL) assay quantifies the inte-
gration of the flurochrome or biotin labeled 
dUTP at single and double-strand DNA 
breakages in a reaction catalyzed by the 
Terminal deoxynucleotidyl Transferase (TdT) 
enzyme that is not dependent on the template. 

This enzyme inserts biotinlyated dUTP or 
FITC-dUTP at 3'-OH end of DNA breaks to 
prodsuce a signal. Intensity of signals depends 
on the number of DNA breaks at the head of 
spermatozoa. Therefore, sperm with normal 
chromatin integrity have only background 
fluorescence, while sperm with fragmented 
DNA (multiple chromatin 3'-OH ends) emit 
highly fluorescence light (94).  

The TUNEL assay has been usually used in 
andrology research related to sperm chro-
matin integrity and it abnormalities. It gives 
valuable data in numerous cases of infertile 
and subfertile men (95,96). The flowcytometric 
quantification of labeled DNA 3'-OH ends in 
sperm head is generally more precise and 
reliable; but it is much more expensive (96). 
 

High-performance liquid chromatography 
This method determines the concentration 

of 8-hydroxy-2-deoxyguanosine (8-OHdG), 
which is a byproduct of oxidative damage of 
DNA in the sperm chromatin. It is the regular-
ly studied biomarker for oxidative damage of 
sperm chromatin. Along with different oxida-
tive adducts to DNA, 8-OHdG has been 
selected as a representative of oxidative 
damage of DNA due to its high specificity, 
strong mutagenicity, and relative abundance 
in DNA (97).  

This method presents  the most direct evi-
dence suggesting the contribution of oxidative 
damage of DNA sperm in male infertility, 
based on the result that levels of 8-OHdG in 
sperm are significantly higher in infertile men 
than in fertile controls and have an opposite 
relation with sperm concentration (98).  
8-OHdG in sperm DNA has been shown to 
increase in smokers, and they inversely cor-
relate with the intake and the seminal plasma 
concentration of vitamin C. If 8-OHdG modi-
fications in DNA were not repaired, it will be 
mutagenic and may lead to early abortion, 
malformations, or malignancy in children. 
Furthermore, this modification could be a 
marker of OS in sperm, which may have 
negative effects on sperm function (99). 
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Significance of sperm chromatin integrity on 
male fertility  

It is believed that sperm chromatin integrity 
is correlated with male fertility (47), thus it has 
been shown that unexplained infertile men 
with normal routine semen parameters have a 
higher DNA Fragmentation Index (% DFI) 
(100). Evenson et al (101) have shown that the 
DFI is the most excellent predictor of   couple 
fertility and their ability to get conceive. 
There are many studies evaluating the effect 
of DFI on ART outcomes, especially in cases 
with recurrent ART failure.  

The relationship between sperm chromatin 
integrity and IUI outcome has been shown in 
several studies (102). Host et al found no correl-
ation between sperm DNA breakages and the 
fertilization rate following ICSI (103). In con-
trast several other studies have found a sig-
nificant negative correlation between sperm 
DNA fragmentation and the ICSI results  
(r=-0.23, p=0.017) (104). Sun et al (105) found a 
negative correlation between sperm semen an-
alysis parameters and sperm DIF.  

In a new study, the proportion of sperm 
with fragmented DNA correlated with num-
bers and embryo quality, embryo develop-
ment and the rate of the ongoing pregnancies. 
DNA fragmentation may not influence the 
fertilization rate following IVF or ICSI (106). 
However, when the patients were divided into 
two category according to cut-off value of 
10%, the fertilization rate was significantly 
higher for DNA fragmentation lower than 
10% (84.1 vs. 70.7%, p<0.05).  

In a prospective study (100), Saleh et al 
examined the relationship between sperm 
DNA damage and ART outcomes in 33 
couples with approved male factor infertility. 
They found that the sperm DFI was negative-
ly correlated with sperm concentration  
(r=-0.31, p=0.001), p motility (r=-0.47; 
p<0.001) and normal sperm morphology  
(r=-0.40; p<0.0001) (100).  

The current data suggest that fertilization 
and pregnancy rates following ICSI, are not 
related to the severity of the sperm defects 
(106). This finding has caused debate on the   

usefulness of ICSI to increase fertilization, 
rare in patients with teratozoospermia. This 
may affect the quality of embryos and the 
resulting fetus (107). Therefore, there is a 
concern about the possible role of elevated 
sperm DNA fragmentation on embryo quality 

(103,108-110), since sperm with abnormal morph-
ology might be able to create an embryo using 
ICSI procedure.  

However, it is suggested that low levels of 
DNA fragmentation can be repaired by the 
oocyte machinery (111,112). In contrast high 
levels of DNA breaks that are further than 
repair, will trigger the apoptosis process 
followed by fragmentation of the early 
embryo or morbidity in later life (105). It may 
be the cause of early fragmentation in em-
bryos created in IVF cycles. The rate of 
blastocyst stage is low in patients with high 
DIF, but natural selection will guarantee that 
most of them will abort before growing to 
term (113). This may be a reason for low effi-
ciency of fertility process and especially as-
sisted reproductive techniques. 

Recently, the importance of paternal role in 
early embryo development has been shown in 
view of that increased chromosomal damage 
is related to repeated spontaneous abortions 
(114). 
 

Repair and prevention of sperm chromatin 
damage 

Sperm chromatin abnormality can be re-
paired during the period between sperm entry 
into the ooplasm and the beginning of the 
next S phase, by virtue of pre and post repli-
cation mechanisms (115). Therefore, the cones-
quences of sperm chromatin abnormality on 
ART outcomes, relates to the collective ef-
fects of sperm DNA breaks dosage and the 
ability of the oocyte to repair the preexisting 
damage. Though, if sperm with high level of 
chromatin damages are applied in ICSI or IVF 
cycles, the oocyte's repair competence might 
be insufficient or not enough. This will lead to 
fragmentation and a low embryo quality that 
is followed by in vitro produced embryo frag-
mentation and elevated rate of early preg-
nancy loss (113, 116). 
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Sperm processing methods certainly influ-
ence selection of healthy population of sperm-
atozoa. The chromatin integrity of processed 
sperm is usually more than that of un-pre-
pared semen (117). Simple preparation tech-
niques such as density gradient centrifugation 
can enrich sperm normal morphology and 
normal nuclear integrity (118). This improving 
effect of density gradient centrifugation can 
be the explanation for little prognostic value 
of sperm parameters prior to preparation in 
terms of fertilization and pregnancy using 
ARTs (119). This valuable effect corresponds 
with the somewhat high post-IVF fertilization 
rate using a simple swim-up method (120). 

In-vitro culture of testicular tissue has also 
been showed to increase the motility and re-
covery rate of testicular spermatozoa (121). The 
ROS production increases when spermatozoa 
are cultured in medium containing leukocytes, 
abnormal spermatozoa, and transition metals. 
Therefore using the processing method itself 
may be the cause of DNA damage. However, 
supporting data show that culture of testicular 
tissue does not increase the liability of its 
spermatozoa to chromatin damage. In sperm 
recovered from obstructive azoospermia, the 
proportion of spermatozoa with single strand-
ed DNA breaks decreased considerably fol-
lowing  3 days of in vitro culture (p=0.005) 
(47). Likewise, immature germ cellS cultured  
in vitro for 48 hrs, make it possible to select 
TUNEL-negative spermatids (122). 

While ROS production is a main cause of 
sperm chromatin damage, antioxidant therapy 
may be the major approach to protect sperm 
chromatin integrity. When Ascorbic Acid  
(600 mmol/l), Alpha-tocopherol (30 and 60 
mmol/l) and Urate (400 mmol/l) are added to 
culture media, it provides considerable pro-
tection (p<0.001) from DNA damage follow-
ing exposure to X-irradiation. Thus, supple-
mentation of culture media with antioxidants 
individually, can beneficially influence the 
sperm chromatin integrity (123). 

Plant derived compounds of Genistein and 
Equol (Isoflavones) have antioxidant activity, 
and so a function is suggested for them in the 

treatment of male infertility. In comparison 
with Ascorbic acid and Alpha-tocopherol, 
Genistein is the most potent antioxidant, fol-
lowed by Equol, Ascorbic acid and Alpha-
tocopherol in culture medium. Genistein and 
Equol in combination are more protective to 
neutralize the oxidative stress. According to 
above results, these compounds also may 
have a role in antioxidant protection sperm 
chromatin integrity and preventing from DNA 
damage (124).  

In addition, several studies showed that 
administration of antioxidant supplement such 
as Ascorbic acid, Alpha-tocopherol, Beta car-
otene, Retinol, Coenzyme Q (Q10), etc. in 
combination with drugs such as folic acid, 
zinc sulfate, carnitine, etc can improve the 
routine parameters of semen, sperm chro-
matin integrity and the outcome of ARTs  

(125-130). 
 

Conclusion 
It has recently been accepted that sperm 

chromatin integrity is an independent index of 
sperm quality and has better diagnostic and 
prognostic capacities in association with 
routine semen analysis results for both in vivo 
and in vitro fertility. Although there are nu-
merous methods to evaluate sperm chromatin 
integrity, each procedure needs to be studied 
more and standardized for routine use in diag-
nostic andrology lab. However, all of these 
methods destroy sperm during the evaluation 
process. Introducing methods with some ef-
fect on whole sperm integrity will improve 
outcomes of ARTs using spermatozoa with 
approved chromatin integrity. The results may 
help the physicians to counsel infertile 
couples referred for ART in a better manner. 
In addition, sperm preparation techniques and 
in vitro culture of spermatozoa in special 
conditions, may develop its quality in men 
having high percentage of DFI. 
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