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Abstract 

Background: The isolation of Mesenchymal Stem Cells (MSCs) from various tissues is 

possible, with the umbilical cord emerging as a competitive alternative to bone marrow. 

In order to fulfill the demands of cell therapy, it is essential to generate stem cells on a 

clinical scale while minimizing time, cost, and contamination. Here is a simple and ef-

fective protocol for isolating MSC from Wharton's Jelly (WJ-MSC) using the explant 

method with various supplements.  

Methods: Utilizing the explant method, small fragments of Wharton's jelly from the 

human umbilical cord were cultured in a flask. The multipotency of the isolated cells, 

were confirmed by their differentiation ability to osteocyte and adipocyte. Additionally, 

the immunophenotyping of WJ-MSCs showed positive expression of CD73, CD90, and 

CD105, while remaining negative for hematopoietic markers CD34 and CD45, meeting 

the criteria for WJ-MSC identification. Following that, to evaluate cells' proliferative 

capacity, various supplements, including basic Fibroblast Growth Factor (bFGF), Non-

Essential amino acids (NEA), and L-Glutamine (L-Gln) were added to either alpha-

Minimal Essential Medium (α-MEM) or Dulbecco's Modified Eagle's Medium-F12 

(DMEM-F12), as the basic culture media. 

Results: WJ-MSCs isolated by the explant method were removed from the tissue after 

seven days and transferred to the culture medium. These cells differentiated into adipo-

cyte and osteocyte lineages, expressing CD73, CD90, and CD105 positively and CD34 

and CD45 negatively. The results revealed that addition of bFGF to α-MEM or DMEM-

F12 media significantly increased the proliferation of MSCs when compared to the con-

trol group. However, there were no significant differences observed when NEA or L-

Gln were added. 

Conclusion: Although bFGF considerably enhances cell proliferation, our study de-

monstrates that MSCs can grow and expand when properly prepared Wharton's jelly tis-

sues of the human umbilical cord. 
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Introduction 

 

Mesenchymal Stem Cells (MSCs) are multipotent 

cells capable of self-renewal and can differentiate into  
 

 

 

 

 
multiple lineages of connective tissue, such as osteo-

cytes, adipocytes, and chondrocytes 1. These cells have 
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gained significant attention for their minimal immuno-

genicity and immunomodulatory properties, making 

them valuable in the treatment of various disorders 2,3. 

Several clinical studies have shown the therapeutic 

effects of MSCs in various diseases such as COVID-19 
4,5, liver cirrhosis 6, rheumatoid arthritis 7, heart failure 
8, and Graft-Versus-Host Disease (GVHD) 9. To isolate 

MSCs, both adult and fetal/perinatal tissues can be util-

ized, including Bone Marrow (BM) 10, Adipose Tissue 

(AT) 11, the dental pulp 12, peripheral blood 13, placenta 
14, amniotic membrane, placental decidua, umbilical 

cord 15 and Wharton's jelly 16,17. However, the limited 

proliferative capacity and low cell content of MSCs 

obtained from adult tissues, especially bone marrow, 

combined with the invasive and painful isolation pro-

cedures associated with an increased risk of infection 

have restricted their widespread application 18-21. 

Hence, finding alternative sources for clinical applica-

tions is needed.  

Unlike adult MSCs, Wharton's Jelly of the human 

umbilical cord-derived MSCs (WJ-MSCs) have at-

tracted great interest due to their numerous advantages, 

including unlimited availability, extraction of large 

quantities, affordability and higher proliferative capaci-

ty 16,22. The isolation of the umbilical cord is non-in-

vasive and does not raise ethical concerns as it involves 

medical waste discarded at birth 23. Unlike, human 

Embryonic Stem Cells (ESCs), WJ-MSCs also produce 

larger quantities of anti-inflammatory cytokines and do 

not induce tumorigenesis 24. Consequently, treatment 

opportunities can be created from a redundant source.  

WJ-MSCs are an attractive and appropriate source 

for cell therapies in allogeneic transplantation due to 

their ability to inhibit immunity and evade immune 

responses. They are almost devoid of MHC class II 

molecules and express low levels of MHC class I, 

CD80, CD86, and CD40 co-stimulatory molecules 25,26. 

Additionally, WJ-MSCs induce Treg cell proliferation, 

inhibiting effector cell responses to alloantigens 27. 

Unlike BM-MSCs, these cells produce higher levels of 

tolerogenic Transforming Growth Factor-β (TGF-β) 

and Interleukin (IL)-10 28. WJ-MSCs also contribute to 

immunosuppression by releasing soluble factors such 

as Hepatocyte Growth Factor (HGF), Prostaglandin E2 

(PGE2), Indoleamine 2,3-dioxygenase (IDO), and 

HLA-G 16. Several studies have shown a relative in-

crease in the expression of pluripotent markers in WJ-

MSCs compared to other sources, suggesting that these 

cells are still in a more primitive state 29.  

On the other hand, the expression of several im-

mune molecules, including chemokines and immune 

regulators, is higher in WJ-MSCs than in other MSCs, 

such as BM-MSCs 30. These findings support the no-

tion that WJ-MSCs are the more appropriate choice for 

processes such as wound healing. Considering the ad-

vancements in treatment methods and the progress of 

regenerative medicine, isolation, identification of spe-

cific features, as well as developing appropriate proce-

dures for the large-scale proliferation of these cells 

could be crucial. 

In this study, we describe step by step process of 

isolation and expanding cells using explant method, 

along with its modified variation. We examined differ-

ences in the proliferation capacity of isolated WJ-

MScs, in the presence of various supplements, such as 

basic Fibroblast Growth Factor (bFGF), Non-Essential 

Amino acids (NEA), and L-Glutamine (L-Gln) in al-

pha-Minimal Essential Medium (α-MEM) and Dulbec-

co's Modified Eagle's Medium-F12 (DMEM-F12) ba-

sal culture media. The present study aimed to provide 

an easy, practical, and reliable method for harvesting a 

large number of WJ-MSCs with superior characteris-

tics. 

 
Materials and Methods 

 

Sample collection 

After receiving approval and consent from the med-

ical ethics committee (IR.SBMU.RIGLD.REC.1399. 

062), Umbilical Cords (UCs) were collected from ce-

sarean-section delivery under the aseptic condition at 

Royan Institute (Tehran-Iran). UCs were rinsed using 

Phosphate Buffer Saline (PBS) containing 1% Pen/ 

Strep-Amphotericin B (Gibco, Grand Island, NY) to 

remove surface blood. UCs were maintained in PBS 

supplemented with antibiotics, 100 U/ml penicillin-

streptomycin (Gibco, Grand Island, NY, USA), stored 

at 4°C and transferred to the lab. 
 

Explant culture 

In explant protocol, after washing the umbilical cord 

with PBS, the vein and arteries were removed, and the 

UC was cut into small fragments (3-4 mm) and rinsed 

again with PBS until no further surface blood could be 

seen. The diced pieces were delivered into 25 cm2 

flasks and incubated at 37°C under a 5% CO2 atmos-

phere in α-MEM (Gibco, Grand Island, NY, USA), 

supplemented with 15% Fetal Bovine Serum (FBS)-

containing 200 U/ml Pen/Strep. The flasks remained 

unmoved for 7 days for MSCs to migrate from the tis-

sue to adhere to the plastic. After that, half of the old 

medium was removed and replaced with the new cul-

ture medium. In the following, the growth of cells was 

monitored every day. The fragments were taken out 

after 10 days, and the adhering cells were allowed to 

grow. When the adherent cells reached 80% confluence 

(P0), they were trypsinized with 0.25% trypsin-EDTA 

(Gibco, Grand Island, NY, USA) and subcultured into 

new flasks. A cell culture microscope (Olympus, Ja-

pan) was used to evaluate the morphology of expanded 

MSCs. 
 

Optimization medium for primary culture of the WJ-MSCs 

We studied two different basal media and three sup-

plements to find the optimum medium for the prolifera-

tion of WJ-MSCs. The 4th passage of cells with 80% 

confluency was detached using trypsin/EDTA 0.25% 

and was centrifuged at 450 g for 10 min. Cells were 
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counted using trypan blue and reseeded at 30,000/cm2 

density in 24 well plates and cultured in α-MEM media 

supplemented with 10% FBS. We designed experi-

mental groups divided into two separated groups based 

on basal medium DMEM-F12/α-MEM containing 10% 

FBS and different combinations of supplements bFGF 

(10 ng/ml), NEA (1×), and L-glutamine (2 mM) as stat-

ed in a workflow (Figure 1) (all from Gibco, Grand 

Island, NY, USA). The seeded cells were treated with 

media groups. Cells were trypsinized and counted after 

exposure to the supplement for 48 and 96 hr. 
 

Characterization of WJ-MSCs 

Differentiation analysis of WJ-MSCs: P4 cells were 

used to investigate the WJ-MSCs' differentiation poten-

tial. The cells were seeded at 10,000 cells/cm2 in 12-

well plates. After reaching approximately 70% conflu-

ence, a specific induction medium was added to each 

well. For the osteogenesis assay, the cells were grown 

in an osteogenic induction medium (Sigma-Aldrich, 

USA) that contained DMEM, 10% FBS, 10 nM Dexa-

methasone, 0.2 mM ascorbic acid 2-phosphate, and 10 

mM glycerol phosphate. Two times a week for 21 days, 

the medium was changed. The induction media was 

withdrawn after the cells had been exposed to it for 21 

days. Then, the cells were washed with PBS, fixed with 

4% paraformaldehyde for 20 min at 4°C, and stained 

with 2% alizarin red at pH=7.2. For adipogenesis in-

duction, the cells were cultured in an adipogenic medi-

um (Sigma-Aldrich, USA) that contained DMEM en-

riched with 10% FBS, indomethacin (50 µg/ml) dexa-

methasone (1 µM), insulin (5 µg/ml), and isobutylme-

thylxanthine (0.5 mM). 

The culture medium was changed every 3~4 days  

 

for up to 21 days. In the following, the cells were fixed 

in 4% paraformaldehyde and visualized with Oil Red 

staining (Sigma-Aldrich, USA). An inverted micro-

scope (Olympus, Japan) was used to observe calcium 

deposits and lipid droplets. 
 

Flow cytometry analysis 

The surface markers of isolated cells were analyzed 

using Phycoerythrin (PE)-conjugated antibodies, in-

cluding CD34, CD45, CD73, CD90, and CD105 (eBi-

oscence, Germany). The cells were detached by tryp-

sin/EDTA; after which they were exposed to particular 

antibodies. Briefly, the detached cells were incubated 

with each antibody in 100 µl staining buffer containing 

2% FBS/PBS for 20 min at 4°C in dark conditions. 

Then, the cells were washed with a staining buffer to 

eliminate the unattached antibodies. Finally, the cells 

were suspended in a staining buffer and analyzed using 

a flow cytometry instrument (BD FACS flow cytome-

try, San Joes, CA, USA). Data analysis was performed 

using Flowing Software 2.5.1. 
 

Statistical analysis 

Data are presented as mean±SD. A t-test or one-way 

ANOVA analyzed comparisons between two or more 

than two groups with Tukey's post hoc test. **** p< 

0.0001, ***p<0.001, **p<0.01 and * p<0.05 was con-

sidered statistically significant. For the statistical tests, 

GraphPad Prism (version 8) was used. 

 
Results 

 

WJ-MSCs culture isolation characterization 

During the explant culture, by changing media in 7, 

10, and 14 days post-WJ-MSCs isolation procedure,  

 

Figure 1. Schematic illustration of the workflow. Characterization of mesenchymal stem cells isolated from human umbilical cord-derived Wharton’s 

jelly by explant method. On the lower left, DMEM-F12/α-MEM only means one of them. Therefore, the experiment was performed once with 

DMEM-F12 with supplements and once in α-MEM culture medium treated with supplements. 
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only adherent WJ-MSCs remained attached to the 

flasks, and most of the non-adherent cells were re-

moved (Figure 2). The remaining WJ-MSCs cells were 

verified within different steps according to their mor-

phology, surface marker expression, and ability to dif-

ferentiate to another cell lineage. As shown in figure 

2F, the isolated cells created a monolayer of spindle-

shaped fibroblastic-like appearance. 
 

WJ-MSCs differentiation potency 

Human WJ-MSCs are spindle-shaped, fibroblast-

like cells (Figure 3A). The isolated WJ-MSCs capabil-

ity for multi-lineage formation was confirmed by oste-

oblast-like and adipocyte-like differentiation assay. 

Osteogenesis verified by alizarin staining showed the 

formation of calcium oxalates in differentiated WJ-

MSCs (Figure 3B). In addition, applying oil-red O 

demonstrated WJ-MSCs differentiation to adipogenic-

like cells (Figure 3C). On the other hand, no similar 

events were detectable in undifferentiated WJ-MSCs. 

These observations provide evidence for the multipo-

tency of isolated and cultured WJ-MSCs. 
 

WJ-MSCs cell surface markers expression 

The minimum criteria for WJ-MSCs immunopheno-

typing are positive for CD73, CD90, and CD105, plus 

remaining negative for hematopoietic markers, includ-

ing CD34 and CD45. As represented in figure 4, our  

 

isolated WJ-MSCs met the mentioned positive and ne-

gative selection criteria. 
 

Different medium effects on the proliferation ability of iso-

lated WJ-MSCs 

WJ-MSCs were cultured in two distinct basal me-

dia, α-MEM or DMEM-F12, with the addition of sup-

plements. The experimental groups were divided into 

three different groups: one with only L-Gln, another 

with NEA and L-Gln (NEA+ L-Gln), and a third group 

with bFGF added to the latter compound (bFGF+ 

NEA+L-Gln). 

The proliferation of WJ-MSCs has been evaluated 

48 and 96 hr post-treatment. Generally, there was no 

significant difference in cell proliferation rate between 

the same groups in both basic culture media. In detail, 

after 48 hr, the expansion of the cells was dramatically 

upper (~2 fold) in bFGF+NEA+L-Gln against the con-

trol group (p˂0.001). It has also shown better outcomes 

in comparison to L-Gln and NEA+L-Gln in both α-

MEM and DMEM-F12 basal media. The expansion 

rate of cells in each treatment and time point is exhibit-

ed in figure 5. Similar results were obtained in 96 hr. 

However, L-Gln can increase the effectiveness of F12 

in MSC expansion at 96 hr. The best expansion rate 

was seen in bFGF+NEA+L-Gln treatment of α-MEM 

and DMEM-F12 after 96 hr compared to the control 

group (~3 fold, p˂0.0001). In brief, for optimum ex-

pansion of WJ-MSCs, applying bFGF+NEA+L-Gln in 

both α-MEM and DMEM-F12 condition media is pref-

erable. 

 

 

 

Figure 2. Isolation of WJ-MSCs by explant method. A) The whole 

umbilical cord, B) The cross-section of the umbilical cord and the 

umbilical cord blood vessels, C) Wharton's jelly cut into 3–4 mm 
explants. Representative phase-contrast images of the WJ-MSCs; D) 

The morphology of primary cells that migrated from explant tissue 

day 7, E) The morphology of cells after 10 days, F) and after 14 days, 

WJ-MSCs were grown from the explants. 

Figure 3. Characterization of Wharton's jelly-derived mesenchymal 

stem cells (WJ-MSCs) (A) Spindle-shaped, fibroblastic-like mesen-

chymal stem cells derived from human umbilical cord WJ-MSCs (B) 
Osteogenesis differentiation assay with alizarin stain revealed the 

formation of calcium oxalates in differentiated MSCs. (C) Oil-red O 

intracellular staining for representation of adipogenic differentiation 
of WJ-MSCs. 

Figure 4. Flow cytometry Analysis of WJ-MSCs cell surface markers. Negative markers and positive markers for CD73, CD90, and CD105. 
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Discussion 
 

MSCs are isolated from different tissues and charac-

terized specifically. Although Bone Marrow-derived 

MSCs (BM-MSCs) have been extensively studied, 

stem cells from various embryonic tissues have recent-

ly attracted great attention due to their abundant avail-

ability and rich source of MSCs 31. One of these tissues 

is human Umbilical cord-derived Wharton's jelly. Alt-

hough MSCs derived from Wharton's jelly have similar 

characteristics to those derived from BM-MSC, they 

have some advantages: a higher frequency and prolif-

eration potential, differentiation into several cell line-

ages, and resistance to age-related changes 32-34. Due to 

their immunologically privileged status, allogeneic 

therapy can be conducted with MSCs 35. In this study, 

we aim to describe a naïve method of isolating WJ-

MSCs for approximately 7 days. This method can 

shorten the primary culture time and increase the pro-

liferation rate and the number of cells compared to the 

other methods, and reduces biological contaminations 

and costs 36. For successful MSC transplantation, it is 

crucial to prepare MSCs with high therapeutic poten-

tial. Developing a method for accelerating the prolifer-

ation of these cells is necessary for obtaining sufficient 

numbers of transplantable cells.  

This study compared the ability of DMEM-F12 and 

α-MEM with different supplements, including bFGF, 

NEA, or L-Gln, to expand WJ-MSCs. Both DMEM-

F12 and α-MEM contain essential and non-essential 

amino acids, which support proliferation of MSCs and 

preserves their characteristics. α-MEM has lower glu-

cose level compared to DMEM-F12 as high glucose 

levels appear to adversely affect cultured stem cells 

through the oxidative stress pathway 37.  

Decreased glucose concentration reduces autophagy 

and apoptosis while increasing colony size in the Colo-

ny Forming Unit (CFU) assay and MSC proliferation 

rate 38,39. Conversely, high glucose concentration, pro-

motes the differentiation of MSC into osteocytes, 

chondrocytes, and adipocytes via activating the TGF-β 

and PKC signaling pathways 40-42. α-MEM contains 

ascorbic acid compared to DMEM-F12, which stimu-

lates MSC proliferation without affecting phenotype or 

proliferative potency 43-45, and can also increase the 

expression of the Sox2 and Oct4 genes 44. Large quanti-

ties of cysteine found in α-MEM can shield mitochon-

dria from H2O2-induced oxidative stress, preventing 

apoptosis, necroptosis, and mitoptosis in human MSCs. 

Cysteine also improves the adherence of MSC cells 

both in vitro and in vivo. Previous studies have shown 

that α-MEM increases the proliferation of mouse and 

human MSCs more effectively than DMEM and RPMI 
46,47. Nekanti et al showed that DMEM-F12 works bet-

ter than other media for MSC proliferation in vitro 48. 

Nevertheless, in this study, there was no significant 

difference in the proliferation rate of cells between 

these two basic culture media.  

Following isolation, to investigate the impact of 

bFGF, NEA, or L-Gln on the expansion capacity of 

WJ-MSCs, cells were seeded into 24-well plates at a 

density of 6×104 cells per well in medium (DMEM-

F12 or α-MEM) supplemented with bFGF, NEA, or L-

Gln. Although the subculture of MSCs is necessary to 

obtain sufficient cell numbers, using MSCs at early 

passage may be beneficial for treatment purposes. Evi-

dence suggests that increasing the passage number of 

MSCs, reduces their abilities to differentiate 49, and 

cytokine secretion 50, and improves disease conditions 
51. Due to these reasons, it becomes challenging to gen-

Figure 5. Proliferation capacity of isolated WJ-MSCs in different cell culture media and time intervals. A) WJ-MSCs, which were cultured in α-MEM 

basal medium with bFGF+NEA+L-Gln altogether, showed a better proliferation effect compared to the control (p=0.0002) during 48 hr culture 

(p=0.0002). At this point, in DMEM-F12 culture media supplemented with the same treatments, only bFGF+NEA+L-Gln treats were significantly 
higher than the control. B) After 96 hr of incubation with mentioned supplements, three treats presented a significantly better growth rate than the 

control, irrespective of their basic media. After 96 hr, the same proliferation pattern in 48 hr was detected but at a higher rate.  

**** p<0.0001, ***p<0.001, ***p<0.001, **p<0.01 and * p<0.05. Non-significant is not shown in the figure. 
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erate MSCs in sufficient numbers and functionality for 

therapeutic purposes. To produce WJ-MSCs with high 

therapeutic potential, it is crucial to develop reproduci-

ble culture conditions. Previous studies have indicated 

that human MSCs exhibit a lack of susceptibility to 

spontaneous transformations and have demonstrated 

normal karyotypes and consistent DNA copy numbers 

during long-term cultures 52,53. Additionally, Nekanti et 

al showed WJ-MCS retained a normal karyotype even 

after large-scale expansion, facilitated by bFGF treat-

ment 54. In our study, focus was on evaluating cell via-

bility using Trypan Blue dye. This approach enabled 

the exclusion of non-viable cells during the cell count-

ing process. 

The half-life of bFGF, like that of other FGF family 

members, is around eight hours under the typical mam-

malian cell culture conditions (37°C and 5% CO). Be-

cause of this instability, using bFGF in cell culture is 

challenging and frequently necessitates high concentra-

tions of the growth factor, daily media changes, or ad-

ditional supplementation of bFGF 55.  

In the current study, a twenty-four-hour cycle of 

media changes was followed in all cultures. Differ-

ences in the growth rate were apparent as early as 48 

hr; however, the highest proliferation rate was ob-

served at 96 hr with bFGF supplementation in both α-

MEM and DMEM-F12 compared to the control group. 

The proliferation rate of human WJ-MSCs cultured in 

the presence of 10 ng/ml of bFGF was significantly in-

creased compared to those of cultures supplemented 

with L-Gln and NEA+ L-Gln (Figure 5).  

Unlike bFGF+NEA+L-Gln, there was no significant 

difference between L-Gln and NEA+L-Gln in compari-

son to the control group, indicating that bFGF was an 

effective supplement for cell proliferation. So, under 

the cell culture conditions of the current study, the ad-

dition of bFGF to both α-MEM or DMEM-F12 result-

ed in a significant increase in the proliferation of WJ-

MSCs. The mechanism by which bFGF affects cell 

proliferation may be associated with increased TRPC1 

channel activity through ERK activation and altered 

expression of apoptosis-related proteins 56. Analysis of 

cell cycle data revealed that bFGF promotes cell prolif-

eration by increasing the proportion of cells spending 

more time in the S phase and progressing to the M 

phase upon bFGF stimulation. Additionally, it stimu-

lates the expression of cyclin D proteins and associated 

kinases. Furthermore, bFGF supplementation influ-

ences the cytokine profile of cells and reduces apopto-

sis 57. 

Earlier investigations have primarily revolved 

around various sources such as bone marrow, adipose 

tissue, human Amniotic Fluid-derived MSCs (AF-

MSCs), or cord blood-derived MSCs 54,58-68. These 

studies have contributed valuable insights into the en-

hancement of MSC proliferation. Nonetheless, a nota-

ble research gap exists, wherein there remains a lack of 

dedicated examination pertaining to the influence of 

specific supplements integrated into fundamental cul-

ture media.  

This study aims to deliberately promote the prolifer-

ation of WJ-MSCs, highlighting an area that warrants 

further investigation. Furthermore, according to the 

available literature, MSCs from different sources show 

a different response to these tested factors since a 

source-and supplement-dependent variability regarding 

MSC proliferation and phenotype is already well doc-

umented. Besides, previous studies, such as Tesarova 

et al, investigated the effect of growth factors on the 

proliferation of WJ-MSC 68. The distinguishing factor 

between our study and studies of this nature lies in our 

utilization of the explant method for cell extraction in 

the initial stage, as opposed to the enzymatic method. 

The explant method offers several advantages over en-

zymatic isolation. Notably, it subjects cells to no prote-

olytic stress, yields high isolation efficiency, and re-

sults in reduced costs and contamination risks 36. In a 

study by Yoon, MSCs from Wharton's jelly were puri-

fied using both explant and enzymatic digestion tech-

niques, with the former demonstrating superior viabil-

ity and cell count 69. The explant method has been re-

ported to yield less heterogeneous cell populations, 

characterized by heightened proliferation rates and 

enhanced cell viability, in comparison to the enzymatic 

method 36,70.  

This study demonstrated that the bFGF supports 

WJ-MSCs cell proliferation more efficiently than L-

Gln and NEA. Nevertheless, these findings indicate 

that although the presence of bFGF significantly im-

proves cell proliferation, proper preparation of Whar-

ton's Jelly of the human umbilical cord tissues can also 

contribute to the growth and proliferation of MSCs. 

This culture protocol could improve the efficiency of 

isolation and preparation of WJ-MSCs. 
 

Conclusion 
 

The explant method presents an accessible and cost-

effective approach for the isolation, cultivation, and 

amplification of WJ-MSCs, all while preserving their 

stemness characteristics, including self-renewal capaci-

ty, multi-differentiation potential, and distinct surface 

markers. The swift cellular expansion and robust pro-

liferation exhibited by WJ-MSCs hold the significance 

of generating larger cell numbers, a crucial aspect for 

repetitive administrations. This study delves into the 

impacts of bFGF, non-essential amino acids, and L-

Glutamine within α-MEM and DMEM-F12 culture 

media on the expansion prowess of WJ-MSCs.  

Furthermore, these findings underscore the viability 

of utilizing bFGF as a supplemental component in cul-

ture media, effectively refining and augmenting the 

proliferative competence of human WJ-MSCs. In light 

of these results, it is advisable to undertake further in-

vestigations to scrutinize differentiation and regenera-

tion potential, as well as to dissect the activation of 

diverse signaling pathways in MSCs, based on the 
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varied treatments employed in this experimental setup. 
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