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Abstract 
 

Background: Alzheimer's Disease (AD) is the most common form of dementia in the 
elderly. Due to the facts that biological causes of AD are complex in addition to in-
creasing rates of AD worldwide, a deeper understanding of AD etiology is required for 
AD treatment and diagnosis.  
 

Methods: To identify molecular pathological alterations in AD brains, GSE36980 series 
containing microarray data samples from temporal cortex, frontal cortex and hippo-
campus were downloaded from Gene Expression Omnibus (GEO) database and valid 
gene symbols were subjected to building a gene co-expression network by a bioinfor-
matics tool known as differential regulation from differential co-expression (DCGL) 
software package. Then, a network-driven integrative analysis was performed to find 
significant genes and underlying biological terms.  
 

Results: A total of 17088 unique genes were parsed into three independent differential 
co-expression networks. As a result, a small number of differentially co-regulated 
genes mostly in frontal and hippocampus lobs were detected as potential biomarkers 
related to AD brains. Ultimately differentially co-regulated genes were enriched in bi-
ological terms including response to lipid and fatty acid and pathways mainly signal-
ing pathway such as G-protein signaling pathway and glutamate receptor groups II 
and III. By conducting co-expression analysis, our study identified multiple genes that 
may play an important role in the pathogenesis of AD.  
 

Conclusion: The study aimed to provide a systematic understanding of the potential 
relationships among these genes and it is hoped that it could aid in AD biomarker dis-
covery. 
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Introduction  
 

Aging causes an increasing susceptibility to cogni-
tive performances due to a developing neurodegen-
eration leading to neurologic disorders, such as demen-
tia. More than 20 million people worldwide suffer from 
dementia, and this number is expected to exceed 80 
million by 2040 because of the rapid increase in the 
numbers of the elderly 1. Alzheimer’s Disease (AD) is 
an irreversible progressive neurodegenerative disease 
affecting the central nervous system. Despite the in-
creasing rate of AD incidence, no therapeutic strategy 
has been developed yet 2. Pathophysiologically, AD-
related brain severe shrinkage caused neural and syn-
aptic degenerations 3. The mentioned degenerative 
events can be detected in post mortem examination of 
patients suffering from severe memory loss 4,5. It is 
thought that the loss of memory is because of ag-
gregating beta amyloid (Aβ) and Neurofibrillary Tan- 
 

 
 
 
 
gles (NFTs) of hyper-phosphorylated tau protein 1,6. 
Additionally, inflammation characterized by activat-ed 
microglia 7 and oxidative stress, which result from an 
imbalance of Reactive Oxygen Species (ROS) and 
antioxidants 8,9 were shown to be associated with AD. 
Epigenetic changes happening in pre-frontal region by 
aging were shown to be related with AD functioning at 
cognitive level 1.  

Rewiring of the biological networks to detect co-
regulated and co-expressed units will help to facilitate 
looking into network’s components and depicting the 
relationships between interconnected genes. Gene co-
expression networks enable us to highlight molecular 
mechanisms underlying diseases 10 and are considered 
as one way to investigate the etiology of AD efficient-
ly. A large number of co-expression network methods 
have been proposed in the literature 11,12. Differential 
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Co-expression Analysis (DCEA) offers a powerful 
approach for exploring phenotypic changes 13. Not only 
is AD etiology incompletely understood but also dif-
ferences at transcriptome level and the genes potential-
ly related to each distinct regions of brain are not rec-
ognized causing AD to be remained somewhat unclear. 
In the present study, a high-throughput genomic scre-
ening approach was applied using DCGL software and 
comparative microarray analyses. It was hypothesized 
that the distinct transcriptional changes in different 
regions of brain lead to AD-associated brain damages. 
Therefore, the transcriptional profiles from the gray 
matter of frontal and temporal cortices were compared 
with hippocampi derived postmortem brains to dissect 
AD pathogenesis in these areas. The rationale behind 
the used network approach is to prioritize AD-cau-
sative genes that are apart from differential alterations 
in their expression and are differentially regulated by 
Transcription Factors (TFs) between contrasting sam-
ples. For this, Differential Regulation Analysis (DRA) 
has been conducted on three separated regions of AD 
brains as contrasting samples.  
 

Materials and Methods 
 

Data acquisition and pre-processing 
The CEL files for GSE36980 series were download-

ed from the GEO (http://www.ncbi.nlm.nih.gov/geo/) 
database and normalized with RMA method by using 
the Linear Models for Microarray Data (limma) R 
package. The main reason for selecting and exploiting 
this dataset is that GSE36980 series cover interspecies 
transcriptome analysis of various regions in gray mat-
ter in postmortem brains suiting the goal of dissecting 
pathological alterations in AD in several brain areas. 
Moreover, a number of researches have previously 
used these series and therefore would be able to com-
pare the findings. After removing ambiguous probes, 
the extracted probe IDs were transformed into gene 
symbols. This data consists of a total of 79 samples 
(Table 1) based on the platform of GPL6244 and corre-
spond to the frontal and temporal cortices and hippo-
campus.  
 

Network construction 
The DCGL R package was used to conduct DCEA 

13,14. This software firstly calculates Differential Co-
expression profile (DCp) and Differential Co-expres-
sion enrichment (DCe) to extract significant co-expres-
sion changes between a pair of genes in control and 
treatment samples. Next, Differentially Co-expressed 
Genes (DCGs) and Differentially Co-expressed Links 
(DCLs) were summarized from DCp and DCe values.  

Next, DCGs and DCLs were extracted from DCp 
and DCe values previously calculated by DCp and DCe 
functions. DCp filters co-expression values of a pair of 
genes were assessed in control and treatment con-
ditions. X and Y were defined as a subset of the gene 
pairs, where n is co-expression neighbors for a gene; 
X = (xi1, xi2, …, xin) 
Y = (yi1, yi2, …, yin) 
The DC of a given gene is calculated with the follow-
ing equation: 
	

 

If the resulting DCGs and DCLs coincide with a TF, 
they will be referred to as a DRG and DRL, respect-
ively. The DRGs and DRLs were scrutinized by DR- 
sort function in Differential Regulation Analysis (DRA) 
module. In fact, DRA module identifies potential TF as 
upstream regulators of DCGs and DCLs 13. Finally, for 
illustrating the interactions between DRGs and their 
regulators, a network of DRGs and coincided TFs ob-
tained by DRA was built for each of the datasets. By 
utilizing the Network Analyzer 15 nodes were set with-
in networks with higher connections to darker color 
and bigger size.  
 

Gene ontology, pathway analysis and visualization  
To find the significantly over-represented biological 

GO terms and functions of gene products within a co-
expression network of DRGs and DRLs, functional 
classification was performed using BINGO Cytoscape 
plugin 16 running hypergeometric test and Benjamini & 
Hochberg FDR correction at significant level 0.01. 
Finally, the clusters were visualized by Enrichment 
map Cytoscape plugin with Jaccard’s coefficient 0.001. 
DRGs were further functionally classified by PAN-
THER database (http://pantherdb.org/) to underlying 
pathways (Figure 1). 
 

Results 
 

Co-expression analysis 
The expression values of GSE36980 datasets were 

analyzed by utilizing DCGL v2.0 R package with de-
fault parameters. A total of 17088 unique genes were 
subjected to expression based filter and variance based 
filter, two functions embedded in DCGL to filter out 
genes that expressed extreme invariability across con-
trol and AD samples yielding 8544 and 2918 genes, 
respectively (Supplementary file 1). Afterward, using 
2918 unique genes, co-expression analysis was per-
formed on temporal cortex, frontal cortex, and hippo-
campus datasets separately. Expression based filter 
removes genes whose mean expression between exper-
iments is lower than the median of this value for all 
genes and variance based filter removes genes that are 
not significantly variable than the median gene 13. In 
order to prioritize seed genes which are potentially 

Table 1. Sample characteristics 
  

Biological samples Control AD patients 

Temporal cortex 19 10 
Frontal cortex 18 15 

Hippocampus 10 7 
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related to AD pathogenesis, common and significant 
DRGs were selected using Targets’ Enrichment Den-
sity (TED) analysis and Targets’ DCL Density (TDD) 
analysis. TED and TDD identify differential co-expres-
sion genes and link in a particular TF’s targets, respect-
ively 13. To this end, targets of significant TFs were 
extracted from 19,9950 TF-to-target interaction pairs 
as a library in DCGL v2.0 software 13. These pairs 
were further filtered out based on DRLs. In sum, 7, 19 
and 13 genes were identified in temporal cortex, frontal 
cortex and hippocampus, respectively (Table 2). Signi-
ficant TFs derived by TED and TDD analysis were 
used to infer co-expression network of DRGs in each 
dataset independently (Figure 2, Supplementary fig-
ures). DRGs were classified in terms of response to 
lipid, response to fatty acid, regulation of transcription 
from RNA polymerase II promoters and regulation of 
nitrogen compound metabolic process (Figure 3). 
Moreover, in pathway analysis, signaling pathways 
such as glutamate and G-protein signaling pathways 
were noteworthy (Figure 1).  
 

Temporal cortex  
460 DCGs and 33656 DCLs were summarized using 

DC sum function to a final set of DCGs and DCLs 
(Supplementary file 2). There were 199 significant TFs 
in the results of TED analysis and 35 significant TFs in 
TDD analysis. 35 TFs that were significant in both of 
these two analysis results were chosen (Supplementary 
file 2). DRA analysis yielded 7 DRGs and 33 DRLs. 
DRGs were not only differentially co-expressed but 
also differentially co-regulated with 35 mentioned TFs. 
Then, a network of DRGs and DRLs was visualized 
using Cytoscape 3.4.0. Based on figure 2, PAX5 tran-
scription factor and genes including ARID1A, CDC42 
and LPPR4 were highlighted as the most important 

units within the genes network with more interconnect-
ed links (Figure 2).  
 

Frontal cortex  
In frontal cortex datasets, 628 DCGs and 166256 

DCLs were summarized to 20 DRGs and 164 DRLs 
(Supplementary file 3). There were 199 significant TFs 
in TED analysis result and 135 significant TFs in TDD 
analysis result from which 135 TFs were chosen that 
were significant in both TED and TDD results (Sup-
plementary file 3). In the inferred network, PAX5 and 
IKZF1 as TFs and genes including GRIK3, MAGI3, 
PRRX1 and DCAF6 were found as highlighted nodes 
with more connectivity.  
 

Figure 1. Bar chart of pathways potentially DRGs extracted from tempral cortex, frontal cortex and hippocampus expression data. PANTHER server 
with default parameters for pathway analysis was used for pathway analysis. The length of each bar showes how many genes have been assigned to a 
given pathway. 

Figure 2. Differential co-expressed network of DRGs and DRLs 
captured by TED and TDD results in temporal cortex datasets. The 
bigger and darker nodes show the nodes with higher connectivity 
within the network. 
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Hippocampus  
According to hippocampus datasets, 670 DCGs and 

56264 DCLs were summarized to 16 DRGs and 43 
DRLs (Supplementary file 4). There were 199 common 
and significant TFs in TED and TDD analysis which 
were used for inferring differential co-expression net-
work with DRGs. There was more connectivity in hip-
pocampus network than the other two networks. PAX5, 
ARNT, GATA1, EGR3 and IKZF1 TFs and genes in-
cluding KCNK1, CACHD1, FABP3 and CHRNB2 
showed highlighted roles as network nodes. 

 
Discussion 

 

Aging is believed to be one of the most important non-
modifiable risk factors of cognitive diseases that lead 
unequivocally to a number of detrimental changes in 
the neural system, increasing neuromorbidity and mor-
tality. AD, as a progressive neurodegenerative disorder 
with no effective treatment options, is typically charac-
terized by the presence of amyloid-beta plaques and 
hyper phosphorylated paired helical filament tau pro-
tein-rich neurofibrillary tangles 1. The identification of 
co-expressed genes related to AD presumably provides 
insights into the underlying mechanisms; in other words, 
a combination of gene effects likely holds promise as a 
more effective approach for detecting disease associat-
ed genes 42. In fact, examining co-expressed genes in 
spite of the individual genes could be more informative 
to explore genes that cause mental health disorders, 
such as AD 43,44. In this case, the correlation between 
two genes varies in distinct samples and thereby they 
are referred to as being differentially co-expressed. 

This correlation may change independently from the 
expression levels of two genes, indicating that trans-
criptome analysis merely based on differential expres-
sion analysis could miss important clues of regulatory 
patterns 45. Co-expression analysis has been performed 
for deciphering molecular mechanisms underlying 
mental health disorders 46-49. In the context of a well-
established network analysis approach and given the 
most variable transcripts between control and AD brain 
samples, attempts were made by DCGL framework to 
explore putative pivotal genes that may be associated 
with AD. This work attempted to identify DRGs and 
links DRLs in AD by comparing expression datasets of 
temporal and frontal cortices and hippocampi. A com-
prehensive search in the literature showed that the ob-
tained DRGs of AD brains mostly have direct or in-
direct links with AD or another neurologic disorder 
(Table 2). They are implicated in the gene ontology 
terms and shared biological pathways like response to 
lipid, fatty acid, nitrogen compound metabolic process 
and glutamate signaling pathways (Figures 1 and 2, 
supplementary file 5). Reportedly, considering GO 
terms as the response to lipid and fatty acid, brain lipid 
homeostasis plays an important role in AD 50. In this 
regard, differential regulation of delta 4-desaturase, 
sphingolipid 1 (DEGS1) and fatty acid binding protein 
3 (FABP3) in hippocampus and lipid phosphate phos-
phatase-related protein type 4 (LPPR4) in temporal 
cortex datasets may fairly explain the relationship be-
tween brain damages happening in these regions and 
lipid metabolism. DEGS1 encodes a member of the 
membrane fatty acid desaturase family which is shown 

Figure 3. Functional classification of biological process in which Differential Regulated Genes (DRGs) were supposed to be involved. The GO terms 
were considered significant based on hypergeometric test with Benjamini & Hochberg FDR correction and significance level 0.01 by BINGO app. 
The results were illustrated using the Enrichment map Cytoscape 3.4.0 plugin. Ticker lines and bigger circles show more genes with higher signifi-
cance level belonging to a given term. 
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to interfere in AD via lipid rafts 25. FABP proteins are 
thought to participate in the uptake, intracellular me-
tabolism and/or transport of long-chain fatty acids. 
Concordantly, serum levels of brain-type FABP are 
elevated in a significant proportion of patients with 
various neurodegenerative diseases including AD 38. 
LPPR4 acts as phospholipid dephosphorylate involving 
axonogenesis. The control of ion flow across the lipid 

membrane is essential for many cellular functions, in-
cluding neuronal excitability and dysfunction of con-
veying ions through lipid bilayers involved in multiple 
neurologic diseases 51. As illustrated in figure 1, the 
DRGs are more implicated in signaling pathways; but 
the DRGs from frontal cortex were more enriched in 
ionotropic glutamate receptor pathway and metabo-
tropic glutamate receptor group II and III pathways. 

Table 2. List of differential regulated genes (DRGs) and corresponding p-value<0.05 of differential co-expression enrichment (DCe) in temporal cortex, frontal 
cortex and hippocampus datasets 

 

 Gene name DCe p-value Description 

Temporal cortex 

ARID1A 0.00069 ARID1A was among down-regulated genes in AD model mice (17) 

Cdc42 0.01224 Cdc42 activity was increased in hippocampus neurons treated with fibrillary β-amyloid (18) 

LPPR4 0.01395 LPPR4 was up-regulated in incipient AD patients (19) 

PITHD1 0.01863 // 

SGIP1 0.02064 // 

SZT2 0.01936 // 

ZMPSTE24 0.01936 // 

Frontal cortex 

CHD5 5.19E-14 The depletion of CHD5 was shown to be linked with AD associated gene sets (20) 

EFHD2 3.00E-07 
EFhd2 has been found to be associated with aggregated tau in the brain in AD and in a mouse model of 

frontotemporal dementia (21,22) 

Prxs 7.82E-07 
Peroxiredoxins (Prxs) may be associated with AD by reducing ROS elicited by amyloid β (Aβ) accumulation 

that could be a causative factor in the pathogenesis of AD (23) 

MAGIE3 1.68E-06 // 

EXTL1 4.14E-06 // 

HPCAL4 2.09E-05 HPCAL4 could be used as a prognostic marker for cognitive decline in AD (24) 

LPHN2 2.59E-05 LPHN2 is likely to be participated in AD as an altered protein in Lipid Raft (25) 

NIPAL3 8.35E-05 NIPAL3 was shown as a biomarker in Late-Onset Major Depressive Disorder (26) 

CACNA1E 0.00017 CACNA1E was down-regulated in cerebral Cockayne syndrome (27) 

IFI16 0.00033 IFI16 was participated in delaying onset of AD (28) 

HHLA3 0.00122 // 

KCNK1 0.00202 KCNK1 exhibited alternative splicing in patients with mesial temporal lobe epilepsy (29) 

rnpc3 0.00384 // 

DCAF6 0.00542 // 

IPO13 0.00581 IPO13 mutants involved in chronic inflammatory diseases (30) 

RPL11 0.00585 RPL11 revealed significant altered expression profiles in the neuron model of AD treated with rhTFAM (31) 

S100A1 0.00716 S100A1 modulates inflammation in AD (32) 

CNTN2 0.02606 CNTN2 associated with AD via BACE1 activity (33) 

GRIK3 0.03774 GRIK3 was highly expressed in major depression (34) 

Hippocampus 

KCNK1 1.55E-09 // 

CHRNB2 2.37E-09 CHRNB2 was found to interfere with the immune system in neurologic disorders (35) 

HAPLN2 3.43E-05 Hapln2 has been recently shown to be accumulated in the neurofibrillary tangle of Alzheimer's brain (36) 

Slc2a1 0.00207 Slc2a1 down-regulation exacerbated AD (37) 

FABP3 0.00298 
serum levels of brain-type FABP are elevated in a significant proportion of patients with various neurodegenera-

tive diseases including AD (38) 

DEGS1 0.00327 DEGS1 is likely to be involved in AD as an altered protein in Lipid Raft (25) 

NKAIN1 0.00435 // 

S100A1 0.00434 S100A1 modulates inflammation in AD (32) 

CNTN2 0.00511 CNTN2 associated with AD via  b-Secretase (BACE1) activity (33) 

SFPQ 0.00816 
SFPQ was shown as a transcription factor with an altered nucleo-cytoplasmic distribution under 

neurodegenerative conditions (39) 
GPSM2 0.01073 // 

GSTM1 0.01591 GSTM1 null genotype was found as risk factor for late-onset Alzheimer's disease in Italian patients (40) 

CACHD1 0.02830 CACHD1 is a substrate of BACE1 responsible for generating the amyloid-b protein (41) 
 

// showing DRGs with ambiguous role in neurologic disorders. 
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The dysregulation of glutamatergic signaling has been 
shown to be associated with AD. Glutamate acts via 
ionotropic glutamate receptors (iGluR) and metabo-
tropic glutamate receptors (mGluR), both of which 
have been implicated in AD 52. Differential regulation 
of glutamate receptor ionotropic, kainate 3 (GRIK3) 
and voltage-dependent R-type calcium channel subunit 
alpha-1E (CACNA1E) in frontal cortex datasets may be 
biologically relevant with the mentioned pathways in 
AD brain areas. Concordantly, a significant change in 
the expression of the GRIK3 gene was detected in a 
patient diagnosed with severe developmental delay 53. 
Many different kinds of signaling pathways are chang-
ed in AD, indeed the relevance of the biological path-
ways shown in figure 1 such as cytoskeletal regulation 
by Rho GTPase suggests mediating of these signaling 
pathways in the different lobs of brain, in this case in 
temporal cortex with differential regulation of CDC42. 
CDC42 has been linked to neuronal diseases like Alz-
heimer and Parkinson's disease through its role in cyto-
skeletal organization 54. Among the DGRs, CNTN2, 
KCNK1 and S100A1 were found common in frontal 
cortex and hippocampus datasets. S100A1 encodes for 
calmodulin signaling molecules. Increased levels of 
calmodulin have been reported in the hippocampus of 
AD model mice 55. These changes seemingly show an 
aberrant involvement of calmodulin in the impairment 
of cell cycle control in AD. As for the potassium chan-
nel subfamily K member 1- KCNK1, recent genetic 
studies suggest a central role for neuroinflammation. 
KCNK1 is a voltage-gated potassium channel upregul-
ated by activated microglia and a mediator in amyloid-
mediated microglial priming, additionally reactive 
oxygen species production that was shown to be related 
with autoimmunity 56. CNTN2 has been shown to un-
dergo nuclear translocation and altered transcription 33. 

These findings probably show that hippocampus 
and frontal cortices might deeply play a role in AD by 
mediating with conveying ions. Their obtained DRGs 
participated in vital processes like signaling, ion trans-
portation and homeostasis. However, these processes 
mostly signal pathways somehow shared with temporal 
cortex implying the role of signal molecules within and 
between brain areas in neurologic dysfunctions. Con-
cordantly, a comprehensive study has been already car-
ried out on GSE36980 series to examine the alteration 
in the expression of diabetes-related genes in AD 
brains where they illustrated that hippocampi of AD 
brains have the most significant alteration in gene ex-
pression profile 57.  

With a glance at table 2 and the terms including 
amyloids, inflammation, ROS and immune system, one 
could infer a cascade of events in which the DRGs 
interfere. Beta-amyloid deposition following the acti-
vation of microglia will initiate an inflammatory re-
sponse leading to the release of potentially neurotoxic 
substances and ROS that targets neural damage 58. Af-
terward, along with immune response, nitrogen com-

pounds will mediate to reverse the consequences of 
oxidative stress in damaged regions 8,9. In sum, it was 
shown that DRGs covered a wide range of known 
functions and processes implicated in main AD signal-
ing pathways. In a study by Satoh et al 59, GSE36980 
series used in the present study were utilized to identify 
biomarker genes relevant to the molecular pathogenesis 
of AD. They analyzed a RNA-Seq dataset composed of 
the transcriptome of postmortem AD brains derived 
from two independent cohorts and they identified the 
core set of 522 genes deregulated in AD brains shared 
between both, compared with normal control subjects. 
Notably, in agreement with our study, LPPR4 was 
bolded in AD brains in both microarray and RNA-seq 
datasets. By consistent downregulation of NeuroD6 in 
AD brains, the results indicated that downregulation of 
NeuroD6 serves as a possible biomarker for AD brains. 
Previous studies identified LPPR4 as direct target 
genes for NeuroD6 by binding assay to E-boxes locat-
ed in target gene promoters 60. GSE36980 series were 
also employed by Fowler et al 61 used to investigate 
potential underlying biology in AD and in concordance 
with the results of the present study, they noticed the 
overrepresentation of glutamate in their data mining. 
They first identified genes consistently associated with 
AD in each of the four separate expression studies, and 
confirmed the result using a fifth study. They next de-
veloped algorithms to search hundreds of thousands of 
GEO data sets, identifying a link between an AD-
associated gene (NEUROD6) and gender. Additional-
ly, they identified several genes related to glutamate 
(including CACNG3, a regulator of AMPA-sensitive 
glutamate receptors; SLC17A7, a mitochondrial oxo-
glutarate carrier; and GOT2, mitochondrial glutamic-
oxaloacetic transaminase. In our study, differential re-
gulation of glutamate receptor ionotropic, kainate 3 
(GRIK3) and voltage-dependent R-type calcium chan-
nel subunit alpha-1E (CACNA1E) in frontal cortex 
datasets could be therefore biologically relevant with 
the mentioned pathways in AD brain areas. Moreover, 
in our study, differential regulation of Slc2a1 in hippo-
campus data seemingly implies the role of impairments 
in glutamatergic transmission mostly in hippocampus 
of AD brains.  The role of glutamate transporters such 
as SLC1A6 was also highlighted in a study by Satoh et 
al 59. 

 

Conclusion 
 

The purpose of the study was to explore the molecu-
lar mechanism in the development of AD, and a com-
parison of AD in three regions of the brain was done. 
Therefore, in the frame of network reconstruction and 
data mining approaches, a small number of possible 
genes and TFs were identified that their interplay could 
lead to neural dysfunctions toward AD. However, one 
should be cautious regarding small sample size while  
by utilizing more adequate samples, the results would 
be more reliable evidences. 
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An expected outcome of such a work would possi- 
 

bly shed light on the bridges between AD-associated 
brain damage in transcriptome level and presenting 
crucial evidence in clinical diagnosis and treatment.  
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