The Distinct Role of Small Heat Shock Protein 20 on HCV NS3 Expression in HEK-293T Cell Line

Marzieh Basirnejad 1, Azam Bolhassani 2*, and Seyed Mehdi Sadat 2

1. Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
2. Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran

Abstract

Background: Hepatitis C (HCV) is known as a serious blood-borne disease that infects millions of people globally. NS3 is a conserved non-structural sequence of hepatitis C virus which has a major role in activating specific CTL responses. As known, there is no effective vaccine against HCV infection, thus it is required to design a specific regimen of vaccination. Recently, the strong immunological properties of Heat shock proteins (Hsps) led to their use as immunomodulators and an antigen carrier for subunit vaccine candidates. In the current study, the role of Hsp20 was evaluated as a HCV NS3 gene carrier in mammalian cell line.

Methods: At first, the recombinant plasmids of pEGFP-Hsp20, pEGFP-NS3, and pEGFP-Hsp20-NS3 were constructed and their accuracy was confirmed by digestion and sequencing. Then, all recombinant plasmids were transfected into HEK293T cells by Lipofectamine and TurboFect gene delivery systems. Finally, the expression of proteins was assessed by fluorescent microscopy, western blotting, and flow cytometry.

Results: In western blotting, the 47, 59, and 79 kDa bands were detected for pEGFP-Hsp20, pEGFP-NS3, and pEGFP-Hsp20-NS3, respectively. The percentage of NS3-Hsp20-GFP protein expression was ~67% by TurboFect and ~50% by Lipofectamine indicating high potency of TurboFect delivery system. Furthermore, the expression of Hsp20 (~83%) was higher than NS3 (~58%) in the cells transfected by TurboFect using flow cytometry analysis. This result was confirmed in the expression of Hsp20-NS3 fusion (~67%) in which Hsp20 increased the delivery of HCV NS3 in vitro. The same data were obtained by Lipofectamine transfection reagent.

Conclusion: Briefly, our data confirmed the role of Hsp20 as a suitable antigen carrier for DNA vaccine design.

Keywords: Hepatitis C virus, Small heat-shock proteins, Vaccines

Introduction

Hepatitis C virus (HCV) is a single-stranded enveloped RNA virus with nearly 9600 nucleotides in length. Based on the RNA genome of the virus, hepatitis C is categorized into six genotypes in the world that the most common type is genotype 1. Eleven proteins are encoded by HCV genome including structural and Non-Structural (NS) proteins. NS3 is a highly conserved, non-structural protein containing a serine protease domain in N-terminal and a helicase/NTPase domain in C-terminal of protein 1. NS3 was suggested to be the best vaccine candidate for hepatitis C due to the induction of strong T-cell immune responses against HCV NS3 related to clearance of infection. However, no effective HCV vaccine has been found because of the genetic variability of host defenses and the potential of the virus to escape the host immunity 2,3.

Among different vaccine strategies, DNA vaccines have attracted a specific interest due to easy production, heat resistant, and safety. A number of evidences showed that CpG motifs in plasmid vectors stimulate B-cell activity and subsequently humoral immune system 4. The aim of vaccination is to provide long-term protection against infections. Due to the low penetration of plasmid DNAs into the cells, development of an effective adjuvant is necessary for designing DNA vaccines 5. Therefore, researchers are studying for proper combination of antigens with effective adjuvants or carrier molecules in subunit vaccines 6.

Recently, Heat shock proteins (Hsps) were proposed to increase immune responses against infectious dis-
Hsps were classified into different families based on their molecular weight. Among heat shock proteins, small HSPs are highly conserved proteins among all species which have a conservative α-crystalline domain (~90 amino acid residues). In addition, small HSPs have many functions such as protein folding, transportation, proteostasis, and immunity. Some small heat shock proteins are tissue specific in human such as HspB2, HspB3, α-crystalline (HspB4), HspB7, HspB9, and HspB10, while others are expressed in all human tissues including HspB1, αB-crystalline (HspB5), HspB6 (20 kDa) and HspB8 (10-17). HSPs are capable of delivering antigens to major histocompatibility complexes (MHC) for stimulation of adaptive immunity.

In this study, the plasmid DNAs encoding Hsp20, NS3, Hsp20-NS3 were generated and their expression was evaluated in mammalian cell line using a cationic polymer (TurboFect) and a cationic lipid (Lipofectamine). TurboFect transfection reagent is a cationic polymer in water which forms compact, stable and positively charged complexes with DNA facilitating gene delivery into eukaryotic cells (www.thermofisher.com). The data indicated that TurboFect transfection reagent was more effective than Lipofectamine for delivering the recombinant DNAs in HEK-293 T cells. Also, Hsp20 enhanced the transfection and expression of HCV NS3 in vitro. The obtained data would be a basic step for immunological studies in future.

Materials and Methods

Construction of the recombinant plasmids

The full length of Hsp20 sequence was synthesized in pQE30 by Biomatik Company. For generation of pEGFP-Hsp20, the Hsp20 gene (Accession No: NM_001012401) was digested by BamHI/HindIII and subcloned into BgII/HindIII sites of pEGFP-C1. The eukaryotic vector (pcDNA3.1) harboring the immunogenic and conserved region of HCV subtype 1a NS3 gene (1095-1379 aa, No: EU781798.1) was digested by XhoI/HindIII (Thermo scientific Fastdigest) and subcloned into pEGFP-C3 expression vector. To prepare the pEGFP-Hsp20-NS3, at the first, the NS3 gene was ligated in SalI/HindIII restriction sites of pQE-Hsp20 using T4 DNA ligase. Then, the fusion of Hsp20-NS3 was digested by BamHI/HindIII and subcloned into BglII/HindIII cloning sites of pEGFP-C1. The Escherichia coli (E. coli) DH5α strain was transformed by all the recombinant vectors. After the extraction of plasmids from single colonies using DNA extraction kit (Qiagen), they were confirmed by digestion and sequencing. The recombinant pEGFP-NS3, pEGFP-Hsp20, and pEGFP-Hsp 20-NS3 plasmids were provided in large scale using DNA extraction kit (Qiagen, Germany) and quantified by NanoDrop spectrophotometry. The purity of plasmids was determined as OD260/OD280 ratio. This ratio was ~1.85 for all plasmids indicating their purity. Figure 1 shows schematic representation of cloning process.

Cell culture

Human embryonic kidney cells (HEK-293T) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supplemented with 10% Fetal Bovine Serum (FBS, Gibco) at 37 °C in presence of 5% CO2 atmosphere. After several passages using trypsin EDTA, the proliferated cells were counted by trypan blue 1X with hemocytometer and divided into 6-well plate.

Transfection of plasmid DNAs into HEK-293T cells using Lipofectamine 2000

The day before transfection, the 5×10⁵ cells were counted and seeded into 6-well plates. The optimal cell confluency for effective transfection was considered 70-80%. For generation of Lipofectamine-plasmid DNA complex, 150 μl of serum-free medium was mixed with 10 μl of Lipofectamine (Invitrogen) and incubated for 5 min at room temperature. Then, 150 μl of incomplete DMEM was mixed with 4 μg of each plasmid (i.e. pEGFP-NS3, pEGFP-Hsp20, pEGFP-Hsp20-NS3, and pEGFP-C1 as a positive control), added to Lipofectamine solution, mixed gently, and incubated for 30 min at room temperature. After that, transfection complexes were added to each well and the medium was replaced after 6 hr of incubation at 37 °C with the complete DMEM containing 10% FBS and 1/100 penicillin/streptomycin.

Transfection of plasmid DNAs into HEK-293T cells using TurboFect

For generation of TurboFect-plasmid DNA complex, 7 μl of TurboFect (Thermo scientific) and 4 μg of plasmid were mixed and incubated for 15 min at room temperature. Finally, the complexes were added drop-wise to each well in serum-free medium. Six hours after the cell transfection, the medium was replaced with the complete DMEM medium. After 48 hr, transfection efficiency using TurboFect and also Lipofectamine was evaluated by fluorescent microscopy, flow...
cytometry, and western blotting. The non-transfected cells and the cells transfected by pEGFP-C1 were used as negative and positive controls, respectively.

Fluorescent microscopy and flow cytometry analysis

The quality and quantity of protein expression were monitored by GFP expression as a reporter gene using fluorescent microscopy (Envert Fluorescent Ceti, Korea) and Fluorescence-Activated Cell Sorting (FACS) caliber flow cytometer (Partec, Germany), respectively. For flow cytometry analysis, the cells were harvested by trypsin and the cell pellets were resuspended in 1 ml PBS (pH=7.4). Then, GFP expression in transfected cells was compared to non-transfected cells.

Western blot analysis

For western blotting, the cells were harvested by trypsin, and the cell pellets were resuspended in PBS. Total cellular proteins were solved in 6X sample buffer containing Tris-HCl (0.5 M), glycerol, SDS, and 2-Mercaptoethanol (2%). The samples were separated on 15% acrylamide gel and transferred to nitrocellulose membrane. The membrane was incubated in blocking buffer (TBS 10X, 0.1% Tween 20, BSA, Merck) and washed with TBS10X and 0.1% Tween 20. Then, anti-GFP polyclonal antibody conjugated with horseradish peroxidase (1:10000 v/v) was used to detect the proteins of interest in the presence of DAB substrate (Roche Diagnostics-Germany).

Statistical analysis

Statistical analysis (Student’s t-test) was performed by Prism 5.0 software (GraphPad, San Diego, California, USA) to analyze the percentage of NS3-GFP, Hsp20-GFP, and Hsp20-NS3-GFP expression using flow cytometry. The value of p<0.05 was considered statistically significant. Similar results were obtained in two independent experiments.

Results

DNA constructs expressing NS3, Hsp20, and Hsp20-NS3 genes

The pEGFP plasmids are mammalian expression vectors containing GFP sequence and Kanamycin resistance marker which were selected in the current study. The recombinant plasmids were prepared by subcloning as mentioned in Methods section. The recombinant pEGFP-Hsp20 digested by restriction enzymes showed the clear bands of ~720 and ~581 bp related to GFP and Hsp20, respectively. The recombinant pEGFP-NS3 digested by enzymes indicated a ~861 bp band related to NS3. In addition, the recombinant pEGFP-Hsp20-NS3 cut by NheI/HindIII showed the clear bands of 720 and 1442 bp related to GFP and Hsp20-NS3, respectively as shown in figure 2.

Figure 2. Confirmation of the recombinant plasmids using digestion: Lane 1: pEGFP-Hsp20, Lane 2: pEGFP-Hsp20 digested by NheI/HindIII (581 bp+720 bp), Lane 3: pEGFP-NS3, Lane 4: pEGFP-NS3 digested by XhoI/HindIII (861 bp), Lane 5: pEGFP-Hsp20-NS3, Lane 6: pEGFP-Hsp20-NS3 digested by NheI/HindIII (1442 bp+720 bp). MW is a molecular weight marker (1 kb, Fermentas).

Figure 3. Transfection efficiency: Analysis of Hsp20-GFP (A), NS3-GFP (B), Hsp20-NS3-GFP (C), and GFP (D) protein expression in HEK-293T cells by TurboFect transfection reagent using fluorescent microscopy and flow cytometry. The pEGFP-C1 was used as a positive control (D). The non-transfected cell was considered as a negative control (M1).
NS3 proteins using TurboFect transfection system was significantly higher than Lipofectamine (p<0.05). These results were obtained using the percentage of protein expression using GFP reporter marker. The percentages of Hsp20-GFP (~47 kDa, lane 1), NS3-GFP (~59 kDa, lane 2), and Hsp20-NS3-GFP (~79 kDa, lane 3) was detected by an anti-GFP antibody as compared to the non-transfected cells (lane 5). The GFP expression (~27 kDa, lane 4) was applied as a positive control. MW is the molecular weight marker.

Discussion

The studies showed that HCV-specific CTL responses are very important for control of viral replication in chronically infected individuals. In 2001, Lazdina et al showed that NS3 elicits Th1 immune responses in a DNA vaccine significantly higher than that in a recombinant protein vaccine. In 1996, Missale et al examined the peripheral blood T cell proliferative responses against HCV core, E1, E2, NS3, NS4 and NS5 recombinant antigens. The results showed that 43% of T-cell responses were induced by NS3 antigen. The similar data were obtained by Tsai et al for a considerable CD4+ T-cell proliferation to NS3 in patients with acute hepatitis C.

In addition, the studies showed that NS3-specific immune responses are cross-reactive in various genotypes of HCV. Thus, NS3 was considered as a vaccine candidate. A major problem during development of DNA vaccines was their weak immunogenicity and the poor potency of such vaccines which may integrate into the host cell. For these reasons, there is a great necessity for the use of adjuvant to stimulate the T-cells.

In this study, HCV NS3 gene as an antigen candidate was effectively cloned in the eukaryotic expression vector alone or fused with Hsp20 as an effective carrier or adjuvant. The purity of plasmids was similar for using in transfection method. In general, the results showed that Hsp20 could increase the transfection efficiency of HCV NS3 in HEK-293T mammalian cells. There are some experiments for increasing the potency of HCV NS3 antigen. For instance, Naderi et al designated Interleukin-12 (IL-12) as an adjuvant for HCV NS3 DNA vaccine. Jiao et al showed that the cellular and humoral responses of the recombinant NS3 under the effect of CpG as an adjuvant was enhanced in animal model. Qazi et al used HSP70 as a suitable vaccine adjuvant. Based on this research, HSPs were selected as a carrier that conjugated to the malaria antigen EB200 and delivered both chimeric protein and DNA construct.

On the other hand, Barrios et al showed that mice immunized with peptides or oligosaccharides conjugated to the mycobacterial Hsp70 generated high titers of IgG antibodies in the absence of any adjuvant. Indeed, the use of Hsp as carrier in conjugated constructs for the induction of anti-peptide and anti-oligosaccharide antibodies could be of value in the design of novel vaccines. Ebrahimi and Tebianian also showed that the linkage of antigen with limited potency to an appropriate carrier such as C-terminal 28 kDa domain of mHS-P70 (HSP70 359-610) containing an 18 kDa peptide binding region (aa 359-540) can increase its immunogenicity without any side effects. Moreover, Hsp20 contains α-crystalline domain known as a ligand for toll-like receptor 2/4 located on dendritic, macrophage, mast, monocyte, microglia, neutrophil, and T-cells.
The Distinct Role of Small Heat Shock Protein 20

Alvarez et al showed that the Leishmania Hsp20 as DNA vaccine is antigenic during natural infections. They indicated that 62% of the Leishmania infected animals, elicited considerable humoral responses against Hsp20 32. Ortiz et al reported that DNA fragment containing B and T cell epitopes of the N-terminal region of Hsp20 with other Babesia bovis antigens elicited high levels of specific IgG antibodies 33. Brown et al also reported that Hsp20 is a highly conserved protein between species and has B and T lymphocyte epitopes 34. Bepperling et al investigated bacterial small heat shock proteins such as Hsp17.7 and Hsp20.2 proteins. The results demonstrated that Hsp20.2 has greater chaperone activity as compared to Hsp17.7 35.

Regarding the roles of NS3 as an antigen candidate and Hsp20 as an antigen carrier and adjuvant, DNA constructs of pEGFP-NS3, pEGFP-Hsp20 and pEGFP-Hsp20-NS3 were prepared and their delivery was evaluated using TurboFect and Lipofectamine in mammalian cells. The researchers classified non-viral gene delivery systems in three groups: Naked DNA delivery, Lipid-based, and polymer-based delivery 36. Several studies used Lipofectamine and TurboFect as a vehicle to transport DNA constructs into the cells. In 1995, Lin et al transfected vHCV1027-1207 encoding the NS3 into BHK-21 cells with Lipofectamine 37. In 2003, He et al showed a suitable transfection of pReHCNS3-s' and pReCMV expressing HCV NS3 into QSG7701 cells using lipofectamin 38. In 2004, Jiao et al studied the transfection of pSecTag2-HCV/NS3, pCI-HCV/NS3, and c3.1-HCV/NS3 into CHO-K1 cells by Lipofectamine. The NS3 expression was detected appropriately 39. In 2008, Lang et al observed that the expression of pCon-NS3/NS4A was confirmed through transient transfection of a Hu7.0 cell line with Lipofect-amine 40.

In 2015, Behzadi et al described the expression of NS3 protein in Hu7 cells using Lipofectamine 41. In the same year, Bolhassani et al showed that TurboFect delivery system increased the efficiency of in vitro transfection of HCV core or coreE1E2 DNA 42. In the current study, the transfection efficiency of both delivery systems was compared (TurboFect and Lipofectamine) for delivering HCV NS3 DNA into HEK-293T cells. In addition, the ability of Hsp20 was evaluated to increase HCV NS3 expression in the cells. Our studies showed that the efficiency of TurboFect transfection reagent was significantly higher than Lipofectamine as a suitable tool for in vitro gene delivery. Moreover, Hsp20 could significantly enhance HCV NS3 DNA delivery and subsequently protein expression in HEK-293T cells using both delivery systems. These results confirm the role of Hsp20 as an antigen carrier.

Conclusion

Generally, our data showed that the percentage of protein expression using TurboFect was higher than Lipofectamine reagent. In addition, the penetration of Hsp20 into the cells was significantly higher than NS3 using both transfection reagents.

Acknowledgement

We would like to thank Fatemeh Motevalli and Sepideh Shahbazi (Pasteur Institute of Iran) for technical assistance.

Conflict of Interest

The authors report no conflicts of interest.

References

16. Kappé G, Franck E, Verschuure P, Boelens WC, Leu-
nissen JA, de Jong WW. The human genome encodes 10
alpha-crystallin-related small heat shock proteins:
17. Sun Y, MacRae TH. Small heat shock proteins: mol-
ecular structure and chaperone function. Cell Mol Life
18. Bolhassani A, Rafati S. Heat-shock proteins as powerful
weapons in vaccine development. Expert Rev Vaccines
2008;7(8):1185-1199.
EA, Santantonio T, Jung MC, et al. Possible mechanism
involving T-lymphocyte response to non-structural pro-
tein 3 in viral clearance in acute hepatitis C virus infec-
21. Lazarda U, Hultgren C, Frelin L, Chen M, Lodin K,
Weiland O, et al. Humoral and CD4(+) T helper (Th) cell
responses to the hepatitis C virus non-structural 3 (NS3)
protein: NS3 primes Th1-like responses more effectively
as a DNA-based immunogen than as a recombinant pro-
22. Missale G, Bertoni R, Lamonaca V, Valli A, Massari M,
Mori C, et al. Different clinical behaviors of acute hepa-
titis C virus infection are associated with different vigor
of the anti-viral cell-mediated immune response. J Clin
23. Tsai S, Liaw Y, Chen MH, Huang CY, Kuo GC. Detec-
tion of type 2-like T-helper cells in hepatitis C virus infec-
tion: Implications for hepatitis C virus chronicity.
24. Sallberg M, Zhang ZX, Chen M, Jin L, Birkett A, Peter-
son DL, et al. Immunogenicity and antigenicity of the
ATPase/helicase domain of the hepatitis C virus non-
25. Gurunathan S, Klinman DM, Seder RA. DNA vaccines:
immunology, application, and optimization. Annu Rev
MR, Gorji A, et al. Interleukin-12 as a genetic adjuvant
involving T-lymphocyte response to non-structural protein
3 of hepatitis C virus and enhancing the
Th1 type immune response. J Viral Hepat 2004;11(1):18-
26.
hepatitis C virus NS3 specific Th1 immune responses in-
duced by co-delivery of protein antigen and CpG with
cationic liposomes. J Gen Virol 2004;85(Pt 6):1545-
1553.
28. Qazi KR, Wikman M, Vasconcelos NM, Berzins K,
Stahl S, Fernández C. Enhancement of DNA vaccine
potency by linkage of Plasmodium falciparum malarial
antigen gene fused with a fragment of HSP70 gene.
Vaccine 2005;23(9):1114-1125.
29. Barrios C, Lussow AR, Van Embden J, Van Der Zee R,
Rappuoli R, Costantino P, et al. Mycobacterial heat-
shock proteins as carrier molecules. H: The use of the 70-
kDa mycobacterial heat-shock protein as carrier for
conjugated vaccineseen immunization the need for adju-
ants and Bacillus Calmette Guérin priming. Europ J
30. Ebrahimi SM, Tebianian M. Role of mycobacterial heat
shock protein 70 (mHSP70) as genetic vaccine adjuvants.
31. McNulty S, Colaco CA, Blandford LE, Bailey CR,
Baschieri S, Todyrky S. Heat-shock proteins as dendritic
cell-targeting vaccines-getting warmer. Immunology
32. Montalvo-Alvarez AM, Folgueira C, Carrión J, Monzote-
Fidalgo L, Cañavate C, Requena JM. The Leishmania
HSP20 is antigenic during natural infections, but, as
DNA vaccine, it does not protect BALB/c mice against
experimental L. amazonensis infection. J Biomed Bio-
technol 2008;2008:695432.
33. Jaramillo Ortiz JM, Del Médico Zajac MP, Zanetti FA,
strategies against Babesia bovis based on prime-boost
immunizations in mice with modified vaccinia Ankara
vector and recombinant proteins. Vaccine 2014;32(36):
4625-4632.
34. Brown WC, Ruef BJ, Norime J, Kegerreis KA, Suarez
CE, Conley PG, et al. A novel 20-kilodalton protein con-
served in Babesia bovis and B. bigemina stimulates
memory CD4(+) T lymphocyte responses in B. bovis-
immune cattle. Mol Biochem Parasitol 2001;118(1):97-
109.
35. Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf
small heat shock protein systems. Proc Natl Acad Sci
USA 2012;109(50):20407-20412.
36. Park TG, Jeong JH, Kim SW. Current status of poly-
58(4):467-486.
37. Lin C, Thomson JA, Rice CM. A central region in the
hepatitis C virus NS4A protein allows formation of an
active NS3-NS4A serine protease complex in vivo and in
38. He QQ, Cheng RX, Sun Y, Feng DY, Chen ZC, Zheng
H. Hepatocyte transformation and tumor development
induced by hepatitis C virus NS3 e-terminal deleted pro-
DNA immunization encoding the secreted nonstructural
protein 3 (NS3) of hepatitis C virus and enhancing the
Th1 type immune response. J Viral Hepat 2004;11(1):18-
26.
40. Lang KA, Yan J, Draghi-Akli R, Khan A, Weiner DB.
Strong HCV NS3-and NS4A-specific cellular immune
responses induced in mice and Rhesus macaques by a
novel HCV genotype 1a/1b consensus DNA vaccine.
Vaccine 2008;26(49):6225-6231.
41. Behzadi MA, Alborzi A, Pouladfar G, Dianatpour M,
Ziyaeyan M. Expression of NS3/NS4A proteins of He-
patitis C virus in Huh7 cells following engineering its