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Abstract 
Diabetes Mellitus (DM) is a chronic heterogeneous disorder and oxidative stress is a 
key participant in the development and progression of it and its complications. Anti-
oxidant status can affect vulnerability to oxidative damage, onset and progression of 
diabetes and diabetes complications. Superoxide dismutase 2 (SOD2) is one of the 
major antioxidant defense systems against free radicals. SOD2 is encoded by the nu-
clear SOD2 gene located on the human chromosome 6q25 and the Ala16Val poly-
morphism has been identified in exon 2 of the human SOD2 gene. Ala16Val (rs4880) is 
the most commonly studied SOD2 single nucleotide polymorphism (SNP) in SOD2 
gene. This SNP changes the amino acid at position 16 from valine (Val) to alanine 
(Ala), which has been shown to cause a conformational change in the target sequence 
of manganese superoxide dismutase (MnSOD) and also affects MnSOD activity in mi-
tochondria. Ala16Val SNP and changes in the activity of the SOD2 antioxidant en-
zyme have been associated with altered progression and risk of different diseases. As-
sociation of this SNP with diabetes and some of its complications have been studied in 
numerous studies. This review evaluated how rs4880, oxidative stress and antioxidant 
status are associated with diabetes and its complications although some aspects of this 
line still remain unclear.   
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Introduction 
 

Diabetes Mellitus (DM) is a chronic disorder that af-
fects different people of all ages, race and sex. There 
are several acute and chronic complications related to 
this disorder 1-3. Cardiovascular diseases, diabetic 
nephropathy, neuropathy and retinopathy are major and 
common complications of diabetes. These complica-
tions are affecting the vascular system, kidney, retina 
and peripheral nerves in diabetic patients and will also 
bring high cost for both individuals and society 4-6. 
Recent evidence introduces oxidative stress as a key 
participant in development and progression of diabetes 
and its micro and macro vascular complications 1,6,7. 
Antioxidant defense system works against free radicals 
4,6. Each antioxidant reduces the action of free radicals 
by different mechanisms 8, including enzymes that de-
grade Reactive Oxygen Species (ROS) 4,9. Superoxide 
dismutase 2 (SOD2) is a key component of antioxidant 
defense system against mitochondrial superoxide radi-
cals. Mutations or variations in antioxidases genes 
happen in diabetes and progress in diabetic patients 1,10.  

 
 
 

 
The valine-to-alanine substitution in MnSOD Ala-

16Val SNP decreases the transport efficiency of the 
enzyme into the mitochondria and modifies the antiox-
idant defense against ROS. Production of a β-sheet 
secondary structure instead of the expected α-helix 
structure results in a reduced MnSOD activity, which 
in turn increases oxidative stress 11. This process is an 
important pathophysiological mechanism in develop-
ment and progression of diabetes and its complication 
1,10,12,13. Total antioxidant status decreases in diabetic 
patients 8. Total Antioxidant Capacity (TAC) modifica-
tion in plasma during oxidative stress and dietary mod-
ulation of plasma redox status can ameliorate oxidative 
stress and may delay or prevent progression and onset 
of the disease 3,6,8,14.  

In agreement with these opinions, some studies 
showed association between SOD2 gene polymor-
phisms with diabetes mellitus and some of its compli-
cations 1,10,13,15,16. In diabetes type 2 patients, diminish-
ing of total antioxidant capacity and depletion of plas-
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ma antioxidants could be related to the complications 
of diabetes 17. Lower plasma TAC and higher serum 
levels of malondialdehyde (MDA), which indicate in-
creased oxidative stress and compromised antioxidant 
defenses are reported in type 2 diabetic patients with 
severe Diabetic Nephropathy (DN) and Chronic Kid-
ney Disease (CKD) 18,19. In this article, the importance 
of antioxidant enzyme gene polymorphisms and total 
antioxidant capacity in diabetes and the complications 
were reviewed. 
 

Diabetes mellitus and its complications  
DM is recognized as a heterogeneous condition and 

also a multifactorial syndrome 1,2. Chronic hypergly-
cemia and disturbances of carbohydrate, lipid and pro-
tein metabolism due to deficiencies in insulin secretion 
and/or insulin action are characteristics of diabetes 
mellitus 1,8. DM is certainly a strong contributor to 
deaths from other causes such as ischemic heart dis-
ease, cerebrovascular disease and CKD 1,2,17. 

Type-1 diabetes mellitus (T1DM) is characterized 
by a near absolute deficiency of insulin secretion. Clas-
sical type-2 diabetes mellitus (T2DM) is attributed to 
insulin resistance and deficient beta-cell function. It is  
 

the major form of diabetes worldwide and accounts for 
nearly 90-95% of those with diabetes. Some risk fac-
tors for T2DM are obesity, physical inactivity, hyper-
tension, certain ethnicities (e.g. Middle Eastern, South 
Asian and Hispanic) and dyslipidemia. Furthermore, 
family history of T2DM and several genetic risk mark-
ers have been shown to be important in relation to dia-
betes 17,20.  

Based on a recent report by the International Diabe-
tes Federation (IDF), cases are increasing everywhere. 
There are an estimated 387 million adults having dia-
betes and by 2035 this will rise to 592 million. In addi-
tion, IDF reported the prevalence of diabetes in Iran as 
8.6% in 2014 in the Iranian population aged 20 to 79 
years 21. From 2005 to 2011, Iranian trend analysis 
revealed 35.1% increase in DM prevalence 22.  

DM chronic complications affect different organs 
and tissues, including eyes, kidneys, heart, blood ves-
sels and peripheral nerves. Diabetic patients are at high 
risk for micro vascular complications (e.g., nephropa-
thy, retinopathy and neuropathy) and macro vascular  
 

complications (e.g., peripheral vascular disease, cere-
brovascular disease and cardiovascular disease) 1,3,20. 
Diabetes is the most common cause of CKD, which is a 
worldwide problem with high and rising prevalence 
affecting 7.2% of the global adult population. The 
prevalence of some degree of CKD among adults with 
type 2 diabetes is 40%. CKD and diabetes are consid-
ered as important risk factors for cardiovascular disease 
and all three conditions are key components of multiple 
morbidities 23-25. 
 

Antioxidant system, oxidative stress and diabetes  
Humans have evolved highly complex antioxidant 

systems (enzymatic and non-enzymatic). Antioxidants 

can be produced endogenously or be obtained from 
exogenous sources e.g., as a part of a diet or dietary 
supplement. Common antioxidants include the vita-
mins A, C, E, glutathione, and the enzymes superoxide 
dismutase, catalase, glutathione peroxidase and gluta-
thione reductase 6,8. Antioxidants counter the action of 
free radicals by several mechanisms. These mecha-
nisms include: 1. enzymes that degrade free radicals, 2. 
proteins such as transferrin that can bind metals which 
stimulate the production of free radicals, and 3. antiox-
idants such as vitamins C and E that act as free radical 
scavengers 4. Antioxidant defense systems work in 
synergy with each other to eliminate excess Reactive 
Oxygen Species (ROS) and maintain balance between 
oxidation and antioxidation in normal conditions in 
order to protect cells and organ systems against free 
radical induced damage 6,13.  

Oxidative stress is defined as excess formation and/ 
or insufficient removal of highly reactive molecules 
such as ROS 1. Excessive generation of ROS is a dele-
terious factor that leads to pathological consequences 
including damages to proteins, lipids and DNA 6,8. Ox-
idative stress is induced by elevations in glucose and 
Free Fatty Acid (FFA) levels and has a key role in the 
pathogenesis of both types of diabetes mellitus. Disrup-
tion of antioxidant defense in diabetic subjects (types 1 
and 2) as well as increased formation of free radicals 
reported in many studies lead to oxidative damage of 
cell components in several tissues, including the kid-
ney, eye, and nervous system 4,26,27. 

Insulin Resistance (IR), β-cell dysfunction, Impaired 
Glucose Tolerance (IGT) and ultimately T2DM, all 
occur by oxidative stress through activating stress 
pathways (e.g., increased production of Advanced Gly-
cosylated End (AGE) products, sorbitol, cytokines, 
activation of nuclear factor kappa-light-chain-enhancer 
of activated cells (NF-kB), and p38 class of mitogen 
activated protein kinases (P38MAPK)) 1,8. Activation 
of these stress-related signaling pathways by reactive 
metabolites results in Vascular Smooth Muscle Cell 
(VSMC) migration and proliferation, a decrease in en-
dothelial production of nitric oxide, insulin action al-
teration in glucose uptake and insulin clearance or in-
sulin secretion, which ultimately cause insulin resist-
ance 28-30. On the other hand, oxidative stress results in 
activation of multiple stress-sensitive kinase signaling 
cascades such as inhibitor kinase beta (IKK-β) and 
some isozymes of protein kinase C (PKC). Once acti-
vated, these kinases are able to phosphorylate multiple 
targets, such as the insulin receptor substrate (IRS) 
proteins (including IRS-1 and IRS-2). Increased phos-
phorylation of them decreases downstream signaling 
molecules (e.g., phosphatidylinositol 3-kinase [PI3K]), 
resulting in reduced insulin action 31.   

Furthermore, many studies demonstrated that in-
creased oxidative stress can cause insulin resistance by 
inhibition of insulin signals and adipokines deregula-
tion 1,6,8,20. In pathology of T1DM, oxidative stress has 
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also been suggested to play a role as a destructive fac-
tor of pancreatic β-cells in the Islets of Langerhans 32.  

Oxidative stress can also participate in development 
and progression of diabetes complications 6,20. Prevent-
ing cardiomyopathy, retinopathy, nephropathy and neu-
ropathy in patients with DM through neutralization of 
reactive molecules has been demonstrated 33. Mecha-
nisms of oxidative stress in diabetes complications are 
partly known and they include activation of transcrip-
tion factors, AGEs products and protein kinase C 6. 
Oxidative stress is an important participant in patho-
genesis and progression of CKD as well. Oxidative 
stress is increased in these patients as a result of mito-
chondrial respiratory system impairment. The in-
creased production of ROS and impaired antioxidant 
defense mechanisms in patients with CKD can inhibit 
normal cell function by damaging cells biomolecules. 
A significant increase in the generation of ROS causes 
progression of CKD to advanced stages 34,35. Increasing 
generation of ROS has been identified as a potentially 
major contributor to pathogenesis of diabetic kidney 
disease. Responsible pathways are still under investiga-
tion 36-38. ROS overproduction and increased oxidative 
stress can also cause vascular endothelial and smooth 
muscle dysfunction. This can lead to pathogenesis of 
diabetic vascular diseases including diabetic neuropa-
thy, retinopathy and nephropathy 39-41. There are exten-
sive investigations on evaluation of the ability of anti-
oxidants in management of diabetes and amelioration 
of its complications. Animal studies have shown that 
primary antioxidants or genetic manipulation of antiox-
idant defenses can at least partially ameliorate oxida-
tive stress and consequentially, reduce severity of dia-
betes complications but data from humans is less clear 
and more studies are required 9,26,27. 
 

Antioxidant capacity 
The concept of TAC was introduced to consider the 

cumulative antioxidant capacity of all the antioxidants 
present in foods (dietary total antioxidant capacity), 
plasma/serum and other body fluids 15,42,43. Total anti-
oxidant capacity provides an integrated parameter ra-
ther than the simple sum of measurable antioxidants. 
The capacity of known and unknown antioxidants and 
their synergistic interaction is therefore assessed, thus 
giving an insight into the delicate balance in vivo be-
tween oxidants and antioxidants 14. Coexistence of de-
creased antioxidant status with diabetic oxidative stress 
can further increase the deleterious effects of free radi-
cals. Reduction in antioxidant potential of plasma in-
creases complications of diabetes including cardiovas-
cular disease, nerve damage, blindness and nephropa-
thy. Thus, the increasing incidence of diabetes is a sig-
nificant health concern beyond the disease itself 5,44.  

Some studies have reported dietary TAC as a good 
indicator of diet quality and plasma antioxidant status 
in different populations 42,45. Dietary TAC can be cal-
culated by using TAC food databases that have been 
constructed by using a number of assays for measuring 

TAC in commonly consumed foods, including the Ox-
ygen Radical Absorbance Capacity (ORAC), the Total 
Radical-trapping Antioxidant Parameters (TRAP), and 
the Ferric-Reducing Antioxidant Power (FRAP) as-
says. The ORAC, TRAP, and FRAP assays can also be 
used for analyzing TAC in blood plasma 42,46,47.  
 

Total antioxidant capacity and diabetes 
Dietary total antioxidant capacity has been shown to 

be inversely associated with risks of chronic diseases 
43. Several studies have shown that the total plasma 
antioxidant status is significantly lower in diabetic pa-
tients rather than normal subjects. A lower risk of type 
2 diabetes mellitus in individuals with higher levels of 
serum antioxidants was also reported 4,8,48. Decreased 
aqueous humor TAC level in diabetic patients and its 
correlation with retinopathy progression was also re-
ported 49. The blood TAC was significantly depleted in 
the diabetic group but wasn’t correlated with the serum 
glucose level, HbA1c and the duration of DM. Fur-
thermore, there was no significant correlation between 
TAC and peripheral nerve conduction parameters 50.  
 

Diminishing of the total antioxidant capacity noted in 
diabetes type 2 patients, especially inadequately meta-
bolically controlled may constitute the essential patho-
genic factor of vascular complication in diabetes. Low 
TAC level accompanied by high blood glucose in poor 
metabolically controlled condition can increase and 
exacerbate oxidative stress in diabetic patients. Activa-
tion of stress pathways through oxidative stress and 
hyperglycemia in these patients and also elevation in 
radical superoxide under this condition all can cause 
vascular complication progression by increasing lipid 
oxidation, accelerating atherogenesis and decreasing 
Nitric Oxide (NO) bioavailability 51. Presence of Coro-
nary Artery Calcification (CAC) in type 1 diabetes is  
 

significantly associated with serum Total Antioxidant  
 

Status (TAS) reduction. The reduction in Total Antiox-
idant Status (TAS) in type 1 diabetic subjects was as-
sociated with increasing HbA1c and duration of diabe-
tes in Valabhji et al’s study, although it suggested that 
the effect and contribution of oxidative stress to the 
higher coronary risk in diabetic patients isn’t mediated 
solely by hyperglycemia 52. This decrease in TAC of 
diabetic patients reflects the action of antioxidants 
against oxidative stress in order to control its related 
damages 8. In contrast to most studies in this area, 
some studies demonstrated that the total plasma antiox-
idant status was significantly higher in patients with 
diabetes compared with the control subjects. These  
 

studies concluded that plasma TAC increased in order 
to provide greater protection against free radical ag-
gression. Because the results are controversial and the 
exact mechanisms underlying this effect are not clear 
yet, further studies are required 53-55. 
 

Superoxide dismutase (SOD) 
Regarding superoxide dismutase [SOD catalyzes the 

disputation of the superoxide (O2
−) radical into either 
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oxygen molecule (O2) or hydrogen peroxide (H2O2)] it  
plays important protective roles against cellular and 
histological damages that are caused by ROS. In com-
parison with other antioxidant enzymes, SOD has a 
high turnover (speed of reaction with its substrate) and 
the reaction is limited only by the frequency of colli-
sion between it and O2

−. Therefore, SOD catalyzes 
dangerous reaction of O2

−, protecting cells from the 
toxicity of this anion. SOD family of antioxidant en-
zymes includes intracellular (Cu Zn-SOD), mitochon-
drial (MnSOD), and extracellular (EC-SOD) enzymes 
also referred to as SOD types 1, 2 and 3, respectively 

1,3,5. Serious illnesses in mice lacking these enzymes 
evidence the physiological significance of SODs 3. 
Many studies have shown SOD levels in diabetic tissue 
and blood decline 5,56,57. There is compelling evidence 
that superoxide excess induced by diabetic hypergly-
cemia plays a central role in tissue damage and diabetic 
vascular complications. Alteration of SOD activity in 
diabetic animals in various tissues, red blood cells and 
plasma are surveyed in many studies 6,58-60. SOD activi-
ty in peripheral blood cells is reduced in diabetic pa-
tients with DN as compared with those without diabe-
tes complication 61. Death of mice lacking SOD2 due 
to the strong oxidative stress, cardiomyopathy and lipid 
accumulation in the liver and skeletal muscles  has also 
been shown 3.   
 

SOD2 gene polymorphisms 
MnSOD (SOD2) gene is located on chromosome 

6q25. It is the only known antioxidant enzyme present 
within the mitochondria. Considering the relevance of 
MnSOD as the first line of defense to ROS production, 
structural and/or functional SNP of the MnSOD encod-
ing gene are of high importance in the maintenance of 
cellular ROS levels. In humans, at least 190 SNPs have 
been identified for MnSOD 11. Ala16Val (rs4880) is a 
functional and most studied MnSOD SNP polymor-
phism in exon 2 of SOD2 gene. A functional polymor-
phism in exon 2 of SOD2 gene Ala16Val (rs4880) was 
identified that resulted in structural alterations in the 
mitochondrial targeting domain, implicating its de-
creased antioxidant potential to limited post-transcrip-
tional transport 1. This substitution of C to T (GCT to 
GTT), that is alanine to valine, results in structural al-
terations in the mitochondrial targeting domain from β-
sheet to α-helix, which induces a 30-40% increase in 
MnSOD activity in mitochondria 1,11,62.   
 

SOD2 Ala16Val SNP and antioxidant status 
Conflicting interaction between Ala16Val SNP and 

antioxidant status was first found in Ala homozygous 
women who had lower antioxidant intake that showed 
higher risk for breast cancer development 11. Shanghai 
Breast Cancer Study provided some evidence that ge-
netic polymorphism in the MnSOD gene may be asso-
ciated with increased risk of breast cancer among Chi-
nese women with high levels of oxidative stress or low 
intake of antioxidants 63. Greatest risk of breast cancer 

among women who consumed lower amounts of die-
tary antioxidants rather than high consumers indicates 
that a diet rich in sources of antioxidants may minimize 
the deleterious effects of the MnSOD polymorphism 64. 
Modulating effects of serum antioxidant nutrient status 
(beta-carotene, lycopene, zeaxanthin/lutein, retinol, al-
pha-tocopherol and gamma-tocopherol) on interaction 
between MnSOD rs4880 polymorphism and cervical 
carcinogenesis risk was suggested according to find-
ings of Tong et al’s study 65. These conflicting results 
in investigation of Ala16Val SNP, antioxidant status 
and cancer may be due to the complex cancer etiology, 
methodological limitations and differences in study 
designs, including the nature and duration of interven-
tion, age, sex, health status and lifestyle characteristics 
of the study populations 11. Despite inconsistencies, the 
overall results suggest that the MnSOD Ala16Val SNP 
can be modulated by dietary factors. However, future 
studies are needed to be performed to clarify the nature 
of this association 11.  
 

SOD2 Ala16Val SNP and diabetes  
Impact of SNPs in genes encoding for antioxidant 

enzymes on oxidative stress modulation and preventing 
subsequent disease development in recent studies has 
raised a growing interest. Protecting effect of MnSOD 
against diabetes has been also shown by numerous 
studies 12,66,67. Protective role of "CC" (Ala/Ala) geno-
type was first reported in T1DM cases and control sub-
jects with A16V polymorphism (rs4880) 62. Mutations 
or variations in antioxidase (Ala16Val polymorphism) 
can decrease its activity, which in turn increases oxida-
tive stress. This process is an important pathophysio-
logical mechanism in the development and progression 
of diabetes and its vascular complication. As Ala16Val 
polymorphism can decrease MnSOD activity, it makes 
Val carriers less resistance to oxidative stress because 
of limited antioxidant potential and consequently 
stressful conditions like hyperglycemia itself and acti-
vation of other stress-sensitive signaling pathways by 
Reactive Metabolites (RMs) resulting in further dam-
ages rather than Ala/Ala and Ala/Val carriers. Through 
such hypothesis that presented in relation to A16V 
SNP, some studies investigated whether this polymor-
phism is related to etiology of type 2 diabetes or diabe-
tes complication in a sample of population 1,13. The 
Ala16Val polymorphism of SOD2 might be a risk fac-
tor for diabetes among Japanese Americans. Results of 
this study suggest that an insufficiency of ROS scav-
enging associated with the lack of Ala allele may lead 
to glucose intolerance 68. Another study showed that 
TT genotype (Val/Val) was most common in both 
T1DM and T2DM patients; CT genotype was common 
in healthy subjects whereas the CC genotype (Ala/Ala) 
was rare in all groups 69. 
 

SOD2 SNP and diabetes complications  
Renal complications: DN is one of the important 

microvascular complications of DM, which is the lead-
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ing cause of CKD 33,70,71. Risk of cardiovascular dis-
eases, progression to End-Stage Renal Disease (ESRD) 
and all-cause mortality increased in these patients 70,71. 
Association of functional impairment of the MnSOD 
gene with an increased risk of DN was studied and 
results showed that V allele of the SOD2 rs4880 poly-
morphism in patients with T1DM increased the risk of 
DN 10. This association was also studied in Chinese 
patients with type 2 diabetes which indicated protective 
effects of Ala allele for the development of DN 13. The 
VV type showed a significantly higher frequency in 
Japanese diabetic patients with nephropathy than AA 
or VA 16. In agreement with a role for SOD2 in the 
protection against oxidative stress and kidney disease 
in type 1 diabetes, the results of Mohammedi et al’s 
study showed that V-allele of rs4880 (V16A) was as-
sociated with the incidence and the progression of dia-
betic nephropathy, with a faster decline in estimated 
Glomerular Filtration Rate (eGFR) 70. Results of an-
other study on Korean type 2 diabetic patients suggest-
ed that V16A polymorphism of MnSOD gene is not 
related to pathogenesis of diabetes but is associated 
with stages of albuminuria. Also, patients with nephro-
pathy, micro and macro groups, had significantly lower 
A allele frequency than those patients without nephro-
pathy 72. Homozygosis for the MnSOD Val allele con-
tributed to development of DN in Finnish and Swedish 
patients with type 1 diabetes 73. Results from 8 years of 
type 1 Danish diabetic patients follow up, showed that 
VV genotype patients had double risk for DN com-
pared with those with AA genotype 74. The frequency 
of the V allele was higher in the Mexican type 2 diabe-
tes patients with macro albuminuria than in the norm 
albuminuria group (41.6 vs. 32.9%). Data of this study 
showed that the SOD2 Ala16Val A allele, which codes 
for the amino acid alanine, confers a protective effect 
against macro albuminuria 10. It is now clear that sus-
ceptibility to DN could be affected by genetic factors 
70. The role of MnSOD genetic variants in protection 
against diabetes kidney complication is supported by 
previous studies. These studies are important in order 
to help us clarify the effect of oxidative stress related 
genes SNPs on diabetes complication 10,70.  
 

Neuropathy: Increased oxidative stress, which is in-
duced by DM, has been implicated in the etiology and 
development of diabetic neuropathy 33,75,76. Oxidative 
stress can cause damage in neurons via nerve lipid pe-
roxidation, the breakdown of mitochondrial DNA and 
inhibition of the respiratory chain, and the cross-link-
ing of the neurofilament protein 75. Rapid changes of 
glia cells may also occur through oxidative disorders 33. 
Severe pain, suffering, disability, cardiac death and 
silent myocardial ischemia are some of the important 
consequences of diabetic neuropathy 40. Antioxidant 
enzymes may protect against the rapid onset and pro-
gression of diabetic neuropathy. Chistyakov et al 
showed that the frequencies of the Val allele (49.4 vs. 
31.5%) of the MnSOD gene and the Val/Val genotype 

(15.9 vs. 2.4%) were significantly more in the DN pa-
tients than in the control group 75. Significantly higher 
frequencies of the Val allele and the homozygous 
Val/Val genotype in patients with diabetic neuropathy 
than diabetics without neuropathy were also shown in 
Egyptian type 1 diabetic patients. But alanine to valine 
substitution in MnSOD gene was not a significant fac-
tor in Egyptian diabetic patients with nephropathy 76.  
 

According to the research findings, oxidative stress is 
an important linkage between hyperglycemia and de-
velopment and progression of diabetic neuropathy. 
Much more studies are needed in order to investigate 
the role of genetic factors directly related to oxidative 
stress in DN formation and progression and to compare 
their results with each other 40,75. 
 

Retinopathy: The other complication of DM is reti-
nopathy 33. The significant role of oxidative stress in 
the development of diabetic retinopathy has been indi-
cated in some studies 77,78. Oxidative stress can cause 
damage to the vascular endothelium in diabetic reti-
nopathy 78. High consumption of oxygen, high propor-
tion of polyunsaturated fatty acids, and exposure to 
visible light are some reasons for high susceptibility of 
retina to oxidative stress 77. Study on Slovene popula-
tion (Caucasians) with type 2 diabetes, provides evi-
dence that the VV genotype of the V16A polymor-
phism of the MnSOD gene might be a risk factor for 
diabetic retinopathy 77. Contribution of the V allele to 
the development of diabetic retinopathy was shown in  
 

Chinese type 2 diabetic patients, too 79. Study on the  
 

results of Korean type 2 diabetic patients suggests that 
V16A polymorphism of the MnSOD gene is not related 
to the development of diabetes and progression of Dia-
betic Retinopathy (DR), but is associated with Diabetic 
Macular Edema (DME) 80. Further studies, with larger 
sample size from different populations are needed to 
better understand the genes associated with diabetic 
retinopathy. In this way, the biochemical mechanisms 
of the disease can be identified that help to develop 
new tools for identification of patients at risk 77,78. 

 

Cardiovascular disease: Cardiovascular disease is one 
of the major diabetes complications 34. Oxidative stress 
is implicated in the onset and progression of cardiovas-
cular disease by its possible important role in athero-
genesis and LDL oxidation 33,81. Genotypic distribution  
 

or allelic frequency of the MnSOD Ala16Val polymor-
phisms do not individually contribute to the etiology of 
diabetic Cardio Vascular Disease (CVD) in Chinese 
type 2 diabetes patients but may contribute to hypertri-
glyceridemia 81. A meta-analysis of the Ala16Val pol-
ymorphism in SOD2 gene suggested that A allele of it 
has reduced the risk of diabetes mellitus, including type 
1 and type 2 diabetes, and Diabetic Micro vascular  
 

Complications (DMI) including diabetic nephropathy, 
diabetic retinopathy and diabetic polyneuropathy 82. A 
cohort study in Denmark concluded that MnSOD 
V16A polymorphism is the independent predictable 
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risk factor of CVD. Increased risk of developing CVD 
in VV and AV genotypes compared with AA genotype 
was also shown in this study 74. Because of incon-
sistency between results of these studies, further study 
will be required to elucidate the association between 
MnSOD Ala16Val genotype and CVD in diabetic pa-
tients 81. 
 

Conclusion 
 

Oxidative stress, largely caused by excess genera-
tion of highly reactive free radicals due to hyperglyce-
mia, not only has a potential role in diabetogenesis and 
development of diabetic complications but also can 
exacerbate progression of them. Antioxidant enzymes 
play crucial role in regulating oxidative status, which is 
affecting diabetes and its related complications. Mn-
SOD antioxidant enzyme plays a major role against 
ROS within the mitochondria of aerobic organisms. 
SNP in gene encoding for MnSOD antioxidant enzyme 
may directly impact on the oxidative stress modulation 
and protection against diabetes and its induced abnor-
malities. MnSOD Ala16Val SNP as the most studied 
structural SNP within the MnSOD encoding gene has 
been shown to alter the enzyme localization and mito-
chondrial transportation, affecting the redox status bal-
ance. Patients with mutant MnSOD demonstrate in-
creased susceptibility to oxidative stress and severe 
mitochondrial dysfunction resulting from elevated ROS 
production. Insufficient ROS scavenging related to the 
MnSOD gene genotype may be associated with suscep-
tibility to glucose intolerance. Many studies have in-
vestigated the association of genetic variation of rs4880 
SNP with diabetes and some of its complications. Sig-
nificant association between this SNP and diabetes 
complications like cardiovascular disease, nephropa-
thy, neuropathy and retinopathy were also shown in 
different studies. Because of inconsistencies between 
studies, many environmental factors such as dietary 
and plasma antioxidant capacity as significant modify-
ing factors have been studied in relation to diabetes and 
some of its complications. Study results have shown 
that these antioxidant statuses can mediate oxidative 
stress consequences in patients 4,83,84. The interaction of 
antioxidant status in association with MnSOD A16V 
SNP and some chronic diseases like cancers have been 
studied in different population. However, these proba-
ble dietary and plasma antioxidant capacity interactions 
with rs4880 SNP in relation to diabetes and its compli-
cations have not been investigated yet. Association of 
antioxidant status, as an environmental factor, with the 
Ala16Val genotypes in diabetes and its related diseases 
still needs to be clarified.  
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