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Abstract 
Background: Genome instability is a main cause of chromosomal alterations in 
both somatic and germ cells when exposed to environmental, physical and 
chemical genotoxicants. Germ cells especially spermatozoa are more vulnera-
ble to suffering from DNA damaging agents during spermatogenesis and also 
more potent in transmitting genome instability to next generation.  
Methods: To investigate the effects of γ-rays on inducing abnormalities mani-
fested as numerical Chromosome Aberrations (CA) and Micronucleus (MN) in 
preimplantation embryos, adult male NMRI mice were irradiated with 4 Gy 
of γ-rays. They were then mated at weekly intervals with superovulated, non-
irradiated female mice in 6 successive weeks. About 68 hr post coitous, four to 
eight cell embryos were retrieved and fixed on slides using standard methods 
in order to screen for CA and MN. 
Results: In embryos generated from irradiated mice, the frequency of aneu-
ploidy and MN  increased dramatically at all post-irradiation sampling times 
as compared to the control (p<0.01). The frequency of embryos expressed MN 
was much higher than chromosomally abnormal embryos, although the trend 
of MN formation was similar to chromosomal abnormalities seen in corre-
sponding sampling times. 
Conclusion: Irradiation of sperms at any stages of spermatogenesis may lead 
to stable chromosomal abnormalities affecting pairing and disjunction of 
chromosomes in successive preimplantation embryos that are expressed as 
MN. Although chromosome analysis of embryos showed various types of 
chromosomal abnormalities, MN assay provide a simpler and faster technique 
for investigating the genotoxicity of agents affecting embryos at preimplant-
ation stages. 
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Introduction 
 

Spermatogenesis is a long, complex and 
finely tuned process 1. During this process, the 
developing germ cells are sensitive to endog-
enous and exogenous stress. Cancer therapies  
 

 
 
 
 
 
 

such as radiotherapy and chemotherapy can 
cause temporary or permanent impairment of 
fertility in male cancer patients who usually 
are in the reproductive age 2-4. Therefore, an 
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important goal of successful treatment is to 
minimize the cytotoxic impact of the treat-
ment in order to maximize chances of reini-
tiating spermatogenesis while still efficiently 
killing cancerous cells. To this end, it is nec-
essary to understand how radiation affects the 
differentiating germ cells and thus produces 
infertility in male mammals or abnormality in 
subsequent embryos or fetuses.  

Sperm DNA damage is gaining interest as a 
potential cause of infertility, and it may be 
initiated by a wide range of causes such as 
drugs, chemotherapy, radiation therapy, ciga-
rette smoking and environmental toxins, geni-
tal tract inflammation, testicular hyperther-
mia, varicoceles, hormonal factors, etc 5. The 
normality of sperm nuclear DNA plays a crit-
ical role in mammalian fertilization and sub-
sequent embryonic development 6. 

Germ cell mutagens such as ionizing radia-
tion may lead to induction of an elevated 
germ line mutation rate in the directly ex-
posed parents. These mutational events may 
have an indirect effect on genome stability 
which is transmitted through the germ line of 
irradiated parents to their offspring 7,8. Male 
and female germ cells vary in their sensitivity 
to the mutagenic effects of chemotherapy and 
radiotherapy, depending on their stage of mat-
uration and the agent used 9,10. 

The effects of radiation on human beings 
include miscarriage, stillbirth, and malfor-
mation due to a genetic disorder in the pater-
nal germ cell, as well as an increased inci-
dence of cancer 7,11,12. In particular, the inci-
dence of genetic disorders in the descendent 
generation is likely to result from genome in-
stabilities in the parent’s generation 13. 

It has been demonstrated that sperm cells 
with damaged or fragmented DNA can ferti-
lize oocytes in vitro 14. Some authors consider 
that this also happens in vivo 15 and that high-
ly motile mouse sperm did not differ in types 
and frequencies of chromosomal abnormali-
ties from those not selected for motility 16. 

It has been shown that DNA-damaged 
sperms have the ability to fertilize the oocyte 
but that embryonic development is very much 

related to the degree of DNA damage. The 
majority of de novo structural chromosome 
aberrations in fetuses and newborns are con-
sidered to be of paternal origin, especially of 
sperm origin 17. 

Due to the importance of the paternal germ 
cell in genetic disorders caused by radiation, 
apoptosis, gene mutation, repair capabilities, 
and chromosome aberrations of spermato-
gonia were used as endpoint markers for 
evaluation 18-23. Investigation of DNA damage 
and chromosomal abnormality due to radia-
tion in germ cells of male and female and 
their embryos can be carried out by several 
methods. One simple and economical method 
for this is the micronucleus test in interphase 
cells 24. 

Micronuclei reflect structural and/or nu-
merical chromosome aberrations arising dur-
ing mitosis 25-28. The quantification of MN is 
simple and fast, and it does not require the 
presence of cells at metaphase stage 27. Some 
studies have used MN assay to investigate the 
irradiation effects on chromosomal aberra-
tions and genome instability 29. 

The aim of this study was, therefore, to in-
vestigate the effects of paternal gamma-irradi-
ation of mice at various time intervals on the 
frequency of micronuclei and numerical chro-
mosome aberrations and compare the efficacy 
of these two methods for screening trans-
generational genome instability induced by 
physical and chemical agents. 
 

Materials and Methods 
 

Animals and test groups 
Six to eight week old NMRI mice with a 

mean weight of 30±5 gr were purchased from 
Razi Institute (Karaj, Iran). Male mice were 
housed singly in plastic cages; females were 
housed in a group of 4-5/cage at least for one 
week before being used for experiments. The 
animals were housed in a room kept in mesh 
cages at 22ºC with a cycle of 10 hr darkness 
and 14 hr light and 60-70% relative humidity. 
Mice were fed with standard breeding granu-
lated diet and water ad libitum. Females and 
males were randomly assigned to control or 
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test groups and mated overnight after induc-
tion of superovulation in females using intra-
peritoneal (i.p) injection of 10 International 
Units (IU) of pregnant mare’s serum gonado-
trophin folligon (PMSG; Intervet, Germany) 
followed by injection of 10 IU of Human 
Chorionic Gonadotrophin (HCG; Organon, 
UK) with a 42-48 hr interval. Four days after 
gamma-irradiation, irradiated male mice were 
mated with superovoulated females in 6 suc-
cessive  weeks at weekly intervals.  

This study was approved by the Ethics 
Committee of Tarbiat Modares University and 
animals were treated according to the univer-
sity regulations. 
 

Gamma-irradiation and coupling    
Mice were whole body irradiated with 4 Gy 

gamma rays generated from a cobalt-60 
source (Theratron II, 780 C, Canada) at a dose 
rate of 132 cGy/min, with source to sample 
distance of (SSD)=82 cm,  field size of 20×20 
cm at room temprature (23±2ºC). Four days 
after gamma-irradiation, irradiated male mice 
were mated with superovoulated un-irradiated  
females in 6 successive weeks at weekly 
intervals.  Three to five irradiated male mice 
were assigned for coupling in each experi-
mental group. Two un-irradiated superovou-
lated  female mice were transferred with an 
irradiated male in a cage for an overnight to 
mate. The next morning female mice were 
checked for Vaginal Plaugh (VP). A VP 

positive female was considered as a pregnant 
mouse. A control group consisted of unirradi-
ated  animals was assigned for each experi-
mental group. All experiments were repeated 
three times.  

It is worthy to mention that several authors 
used the dose of 4 Gy for investigating radi-
ation induced genomic instability 30, in vitro 
cytogenetic effects on human and mouse 
germ cells 31,32 and prenatal effects of gamma-
irradiation 33.   
 

Embryo recovery 
About 68 hr post coitous (p.c), the pregnant 

females were sacrificed by cervical disloc-
ation method and their oviducts were flushed 

using a special flush syringe (Supa, Iran) 
filled with 37ºC incubated T6 medium [ingre-
dients for pH of 7.2-7.4; NaCl (4.73 mg/ml), 
KCl (110 µg/ml), NaH2PO4 (50 µg/ml), MgCl2. 
6H2O (100 µg/ml), CaCl2.2H2O (260 µg/ml), 
NaHCO3 (2.10 mg/ml), phenol red (10 µg/ml), 
ethylenediaminetetraacetic acid (EDTA 6 µg/ 
ml), glucose (1 mg/ml) and Na-pyruvate  
(30 µg/ml) purchased from Sigma, St. Louis, 
MO, USA; penicillin G (60 µg/ml) and strep-
tomycin (50 µg/ml) from Seromed, Berlin, 
Germany and Na-lactate (1.98 µg/ml) from 
Merck, Darmstadt, Germany]. The flushing 
was done under a stereomicroscope (Hund-
Wetzlar, Wetzlar, Germany) to obtain 4-8 cell 
embryos. The collected morphologically nor-
mal embryos were transferred to fresh T6 
medium supplemented with 15 mg/ml bovin 
serum albumin (BSA, Sigma) containing  
0.2 µg/ml colcemid (Gibco BRL, Lifetech, 
USA) incubated in a humidified CO2 incuba-
tor (Lifetech, USA) at 37ºC for 16-20 hr (Col-
cemid was used only for metaphase analysis 
not for MN assay).  
 

Slide prepareation for cytogenetic analysis 
 

For cytogenetic analysis, Dyban method, 
which is a suitable method for analyzing chro-
mosomes of embryo cells, was used with 
some modifications 34. Briefly, the zona pellu-
cida was removed by the use of Tyrode's acid 
[ingredients for pH=2.5; NaCl (8 mg/ml), KCl  
 

(2 mg/ml), MgCl2.6H2O (0.1 mg/ml), CaCl2. 
2H2O (0.25 mg/ml), glucose (1 mg/ml) and  
 

polyvinylpyrrolidone (4 mg/ml) all from Sig-
ma, St. Louis, MO, USA]. This process was 
followed under a stereomicroscope to avoid 
damage to the blastomers. Then embryos 
were transferred to a watch glass containing 
1% sodium citrate (Sigma, St. Louis, MO, 
USA) as a hypotonic solution for 30 min. 
Embryos were placed on a pre-cleaned slide 
and fixed with a drop of  fixative consisting of 
methanol and acetic acid (3:1) (Merck, Darm-
stadt, Germany).  

 

After leaving overnight at room temp-
erature, slides were stained in 3% Giemsa 
(Merck, Darmstadt, Germany) for 3 min and 
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cells were analyzed under a light microscope 
(Nikon, Kawasaki, Japan) at ×1000 magnific-
ation  to screen micronuclei in blastomers and  
numerical chromosome abnormalities. Fig-
ures 1 and 2 show sample metaphase and 
blastomers with or without micronuclei after 
staining in Giemsa. 
 

Statistical analysis 
Data were statistically analyzed and the sig-

nificance of any inter-group differences was 
evaluated with χ2 and Mann-Whitney U-test 
using SPSS (version 16) software. One way 
analysis of variance (ANOVA) was used to 
compare three or more groups. A p-value of 
less than 0.05 was considered significant.  
 

Results 
Results are summarized in tables 1 and 2 

and shown in figure 3. As seen, radiation 
dramatically increased the frequency of em-
bryos with abnormal metaphases (Table 1) 
and the yield of MN in embryos generated 
from irradiated males was compared to em-

bryos generated from non-irradiated male 
mice (Table 2). As seen in figure 3A, in the 
embryos generated from irradiated males 
from 1st to 6th weeks post-irradiation, 14.33, 
17.7, 23.3, 29.7, 35 and 41% of embryos con-
tained abnormal metaphase plates respectively 
and all values were significantly higher than 
the control group value of 8.7% (p<0.01). The 
frequencies of embryos containing MN were 
19.9, 24, 36.8, 41.57, 53.9 and 66.7%, respec-
tively which were all significantly higher than 
the control group value of 10.6% (p<0.01) 
(Figure 3A). Similar trend of MN formation 
following irradiation was observed when the 
frequencies of MN were analyzed per 100 
cells instead of 100 embryos (Figure 3B). In 
table 2 and figure 3, the frequency of micro-
nuclei is expressed as MN per cell because all 
the embryos did not contain similar number of 
cells. All the embryos retrieved were not at 
eight cell stage, i.e. different embryos con-
tained different number of cells. This analysis 
might provide more accurate estimate of mi-
cronuclei formation in cells rather than as-
suming all embryos have similar number of 
cells.  

 Data shown in figure 3 clearly indicate that 
the frequency of micronucleated embryos and 
cells in all post-irradiation mating times was 
significantly higher than embryos or cells 
with abnormal metaphase plates (p<0.05 for 
weeks 1 and 2; p<0.01 for weeks 3-6). How-
ever, the increasing trend of abnormal meta-
phase and micronuclei formation was similar.   

 
Discussion 

 

Studies of preimplantation stage embryos 
by classic cytogenetic techniques have limita-
tions, starting with the need for good meta-

Figure 1. Metaphase plates prepared for blastomers showing 
A) normal; B) hyperdiploid; C) hypodiploid; D) near triploid 
metaphase spreads 

Figure 2. Photomicrographs of A) blastomers showing 8 cell normal embryo; B) two cell embryo having one micronucleus; C) two 
cells at anaphase with lagging chromosomes (arrows) eventualy forming micronuclei  
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phase spreads when only one third of all ana-
lyzed embryos may show good quality meta-
phases (e.g., Table 1) 35,36. MN test is a relia-
ble in vivo test for evaluation of the clasto-
genic effects of mutagens and radiation. MN 
arises from acentric chromosome fragments 
or chromosomes which are not incorporated 
into daughter nuclei during mitosis 25. MN 
scoring in interphase cells has been proposed 
and used as the quick and easy substitute for 
the more difficult and time consuming meta-
phase aberration analysis 37- 39. 

Sperm DNA fragmentation affects sperm 
motility and fertilization rates 40. It has been 
reported in vivo that the likelihood of boar 

spermatozoa with unstable chromatin to reach 
and to fertilize the oocyte is very low 41. There 
is evidence suggesting that the journey of the 
sperm cells from the site of deposition to the 
site of fertilization is both dynamic (by the 
sperm and the female tract) and highly com-
plex 42. Passage of sperm through female re-
productive tract is regulated to maximize the 
chance of fertilization and to ensure that 
sperm cells with normal morphology and vig-
orous motility will be the ones to succeed 43. 

It has been reported that in vitro, sperm 
with single stranded or denatured DNA bind 
less or do not bind at all to the Zona Pellucida 
(ZP) 18. In pigs, spermatozoa with stable chro-

Table 1. Frequency of abnormal metaphases in analyzed embryos and cells after paternal irradiation (4 Gy gamma rays), before mating 
with non-irradiated female mice at weekly intervals. Results were obtained from three independent experiments. Data in each experiment 

represent pooled data obtained from a group of 4-5 VP positive (pregnant) mice 
 

Treatment  
(Mating intervals 
after irradiation) 

Total no. of 
embryo  

retrieved 

Total no. of 
cells 

Total no. of 
cells in 

metaphase 

Total no. of 
abnormal 
metaphase 

Abnormal 
metaphase/ 

embryo 

Abnormal 
metaphase/ 

cell 

%Abnormal 
metaphase/ 

embryo 
Control        
 Exp.* 1 58 290 55 4 0.07 0.014 7 
 Exp. 2 51 240 50 4 0.09 0.017 9 
 Exp. 3 30 180 40 3 0.1 0.017 10 
Week 1 
 Exp.* 1 47 260 20 6 0.13 0.023 13 
 Exp. 2 30 180 15 4 0.13 0.022 13 
 Exp. 3 29 180 25 5 0.17 0.028 17 
Week 2 
 Exp.* 1 58 290 14 6 0.10 0.021 10 
 Exp. 2 60 300 21 11 0.18 0.037 18 
 Exp. 3 40 195 20 10 0.25 0.051 25 
Week 3 
 Exp.* 1 52 250 10 6 0.12 0.024 12 

Exp. 2 50 175 15 9 0.18 0.051 18 
 Exp. 3 30 115 23 12 0.4 0.10 40 
Week 4 
 Exp.* 1 48 168 15 10 0.21 0.059 21 
 Exp. 2 39 115 15 10 0.26 0.087 26 
 Exp. 3 26 90 20 11 0.42 0.12 42 
Week 5 
 Exp.* 1 44 200 20 16 0.36 0.08 36 
 Exp. 2 38 180 10 8 0.21 0.04 21 
 Exp. 3 27 103 20 13 0.48 0.126 48 
Week 6 
 Exp.* 1 45 200 20 17 0.38 0.085 38 
 Exp. 2 38 160 20 16 0.42 0.1 42 
 Exp. 3 30 102 15 13 0.43 0.127 43 

 

  * Exp=Experiment  
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matin are more likely both to bind to the ovi-
duct and to traverse the reproductive tract in 
vivo 41, ultimately reaching the oocytes and 
penetrating the zona pellucida. Since the fe-
male reproductive tract does not assess the 
sperm DNA quality directly, the selection has 
to be based on sperm phenotype and function 
44. 

Other studies showed that radiation in-
duced DNA damages in spermatozoa may be 
transmitted to the next generation without be-
ing selected at fertilization, because it is pre-
viously shown that spermatozoa can retain a 
high fertilizing ability even after a high dose 

of irradiation 45. In an investigation on in vitro 
fertilization rate of mouse eggs with sperm 
after X-irradiation at various spermatogenesis 
stages, Mastuda et al 46 have shown that the 
number of fertilized eggs seemed to remain 
constant at control level until the 4th week 
after X-irradiation and then it reached to a 
minimum level in the 6th week. The response 
to radiation exposure is very much dependent 
on the developmental stage of germ cells dur-
ing which this exposure takes place. These 
changes are explained in terms of the differ-
ential sensitivity of cells to killing and aberra-
tion induction in different phases of cell cy-  

Table 2. Frequency of micronuclei in analyzed embryos and cells after paternal irradiation (4 Gy gamma rays), before mating with 
non-irradiated female mice at weekly intervals. Results were obtained from three independent experiments. Data in each experiment 

represent pooled data obtained from a group of 4-5 VP positive (pregnant) mice 
 

Treatment (Mating  
intervals after irradiation) 

Total no. of  
embryo retrieved 

Total no. of 
cells 

Total no. of 
MN ** 

MN/ 
Embryo MN/cell# %Embryo with MN 

Control 
 Exp.* 1 60 310 7 0.12 0.023 12 
 Exp. 2 53 250 5 0.094 0.02 9.4 
 Exp. 3 28 220 3 0.11 0.014 11 
Week 1 
 Exp. 1 45 262 9 0.2 0.03 20 
 Exp. 2 32 230 7 0.22 0.03 22 
 Exp. 3 28 180 5 0.18 0.028 18 
Week 2 
 Exp. 1 80 402 17 0.21 0.04 21 
 Exp. 2 73 345 15 0.21 0.04 21 
 Exp. 3 33 195 10 0.3 0.05 30 
Week 3 
 Exp. 1 60 285 20 0.33 0.07 33 
 Exp. 2 59 175 17 0.29 0.10 29 
 Exp. 3 31 116 15 0.48 0.13 48 
Week 4 
 Exp. 1 46 165 20 0.43 0.12 43 
 Exp. 2 38 110 15 0.39 0.14 39 
 Exp. 3 24 85 10 0.42 0.12 42 
Week 5 
 Exp. 1 42 124 22 0.52 0.18 52 
 Exp. 2 36 106 18 0.5 0.17 50 
 Exp. 3 27 64 16 0.59 0.25 59 
Week 6 
 Exp. 1 59 175 40 0.68 0.23 68 
 Exp. 2 49 145 32 0.65 0.22 65 
 Exp. 3 33 99 22 0.67 0.22 67 

 

* Exp=Experiment; ** MN=Micronucleus 
# The column showing MN/cell is indicative of the frequency of MN observed in total cells of analyzed embryos. This was done because all the em-
bryos did not contain similar number of cells 
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cle. Results obtained in the present study, as 
shown in figures 3A and B, are in agreement 
with other previous reports indicating radio-
sensitivity of all cell lineage in the spermato-
genesis process 19,32,45-50.  

As the data indicates, the frequency of nu-
merical chromosome abnormalities and MN 
presence in embryos generated from gamma-
irradiated male mice for all six weeks post-
irradiation is significantly higher than that of 
the control group (p<0.01). Moreover, the fre-
quency of abnormalities sharply increased 
from the 4th through the 6th weeks post-ir-
radiation. 

MN is the result of chromosomal aberra-
tions induced during preceding mitotic divi-
sion of blastomers. These are from acentric 
fragment or lagging chromosomes induced by 
mutagens or clastogens such as ionizing ra-
diation or are the result of non-disjunction 
25,39,51. Irradiation of embryos in the first mitot-
ic division could induce chromosomal abnor-
malities after several blastomers divisions in 
embryos. Recently, it was shown that irradia-
tion of germ cells before mating leads to in-
creased frequencies of chromosomal aberra-
tions in subsequent pre-implantation embryos 
52. Numerical abnormal metaphase plates may 
contain more than 1 chromosome abnormality 
that each one by itself can be expressed and 
visualized as MN in subsequent generating 

embryos. As indicated in figure 3, the in-
crease of MN as compared with abnormal 
metaphase plates might be due to this reason. 

Required time for spermatogenesis in mice 
for spermatozoa development from the stem 
cells is more or less constant (about 6 weeks). 
Accordingly, the fertilizing spermatozoa in 
the first week post gamma-irradiation has 
been in its spermatid stage at the time of irra-
diation, also gamma-irradiated early sperma-
tid, secondary spermatocyte, early spermato-
cyte and spermatogonia stages act as a ferti-
lizing spermatozoa in 2nd, 3rd, 4th, 5th and 
6th weeks post-irradiation, respectively 53.  

Data shown in tables 1 and 2 as well as fig-
ure 3 suggest that gamma-irradiation affects 
all the stages of spermatogenesis cycle in the 
male mice for inducing micronuclei and nu-
merical chromosome aberrations. As seen, the 
increased frequencies of MN and numerical 
chromosome aberrations in male mice for all 
mating times post-irradiation were signifi-
cantly different from the controls’ (p<0.01). 
There was a sharp increase in MN frequency 
and numerical chromosome aberrations from 
4th to 6th weeks post-irradiation. These re-
sults suggest that gamma-irradiation affects 
all the stages of spermatogenesis cycle in the 
male mice, but spermatocyte and spermato-
gonia stages are the most radiosensitive stages 
for inducing numerical chromosome abnor-

Figure 3. Percentage of chromosomal abnormalities and MN presence in A) 4-8 cell preimplantation embryos; and B) cells generated 
from gamma-irradiated (4 Gy) male. Whole body irradiated males were mated successively at weekly intervals from 1-6 weeks after 
irradiation. Error bars show standard error of mean values calculated from three independent experiments.  
* denotes the p-value <0.01 and ** denotes p-value <0.001 as compared to control values. 
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malities. These abnormalities may be due to 
translocations induced in chromosomes that 
affect chromosome pairing and meiotic segre-
gation in male mice resulting in aneuploid 
lagging chromosomes 52 which are expressed 
as MN.  
 

Conclusion 
 

In conclusion, it was shown that first, the 
genome instability induced in male germ cells 
at any stages of spermatogenic cycle will be 
translated into the subsequent embryos form-
ed by these germ cells as chromosomal ab-
normalities or micronuclei; i.e. transgener-
ational genome instability. Therefore, the 
benefit of this type of research is showing that 
the effect of DNA damaging agents such as 
ionizing radiation is not limited to the sper-
matogenesis process, rather they can be trans-
mitted to the next generation. These types of 
damages are the main causes of embryonic 
death, implantation failure, and embryonic 
abnormalities in later stages. Second, micro-
nuclei are usually considered as chromosome 
fragments of lagging chromosomes observa-
ble after first mitotic cycle. It was shown that 
DNA damage in any stage of spermatogenic 
cycle will lead to the formation of micronu-
clei in subsequent embryos. The results also 
indicate that micronuclei assay provide an 
easy and simple method for screening trans-
generational genome instability in preim-
plantation embryos induced by chemical and 
physical agents as compared to more difficult 
and time consuming metaphase analysis tech-
niques. 
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