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Abstract 
 

Background: Epitope prediction remains a major challenge in malaria due to the 
unique parasite biology, in addition to rapidly evolving parasite sequence variation in 
Plasmodium species. Although several models for epitope prediction exist, they are 
not useful in Plasmodium specific epitope development. Hence, it was proposed to 
use machine learning based methods to develop a peptide sequence based epitope 
predictor specific for malaria.  
 

Methods: Model datasets were developed and performance was tested using various 
machine learning algorithms. Machine learning classifiers were trained on epitope da-
ta using sequence features and comparison of amino acid physicochemical properties 
was done to yield a valid prediction model. 
 

Results: The findings from the analysis reveal that the model developed using selected 
classifiers after preprocessing by Waikato Environment for Knowledge Analysis (WE-
KA) performed better than other methods. The datasets for benchmarks of perfor-
mance are deposited in the repository https://github.com/githubramaadiga/epito-
pe_dataset. 
 

Conclusion: The study is the first in-silico study on benchmarking Plasmodium cyto-
toxic T cell epitope datasets using machine learning approach. The peptide based 
predictors have been used for the first time to classify cytotoxic T cell epitopes in ma-
laria. Algorithms has been evaluated using real datasets from malaria to obtain the 
model. 
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Introduction 
 

Increasing availability of data and the advancement 

of machine learning methods have resulted in im-

proved performance of these methods in recent years, 

as has been demonstrated on Major Histocompatibility 

Complex (MHC) binding data 1-5. MHCs bind and pre-

sent peptides to T cells for recognition. Many antigens 

with potential T cell epitope have been mapped in 

Plasmodium and reviewed 4. Several methods for in 

silico quantitative prediction of MHC class exist 6-11 

which do not provide reliable prediction scores. Based 

on the prediction of MHC binding required for T cell 

recognition, specific epitopes have been reported. 

Though experimentally it is a very time consuming 

extensive process, bioinformatics methods may help to 

develop epitope predictors rapidly and accurately. 

Various machine learning algorithms are available 

for testing model performance in predicting epitopes. 

Some commonly used algorithms in WEKA include 

Naive Bayes, k-nearest neighbour, logistic regression,  
 

 

 

 

 
and support vector machines (SVM). Naive Bayes is an 

implementation of Bayes’ theorem supporting multi-

class and binary classification problems. The KNN 

algorithm and logistic regression are simple methods 

for generalization in small samples and in using binary 

classification 12. Sequential Minimal Optimization 

(SMO) refers to the optimization algorithm used within 

the SVM implementation. Naive Bayes and SVM  are 

generally found to be suitable for bioassay based work 
13 but do not handle class overlap very well. Supervised 

machine learning algorithms which are ensemble-based 

perform better than individual classifiers and are in-

creasingly being used. Ensemble methods are the meta 

algorithms generating one predictive model and de-

creasing bias and variance, thereby improving predic-

tion ability. In the current study, the use of meta classi-

fiers was evaluated and discussed. 

There has been a recent explosion of data driven so-

lutions for the prediction of T-cell epitope. The peptide 
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based sequence information has been exploited leading 

to various machine learning algorithms being tested 

and validated. However, in the area of malaria studies, 

research on peptide based sequence information is 

scarce. Thus, in this study, a benchmark training set 

was developed which would be unique and it provides 

a comparative metric for testing the performance and 

evaluation of algorithms. The present analysis was per-

formed for cytotoxic T-cell epitopes of Plasmodium. 

 
Materials and Methods 

 

Preparation of dataset 
Dataset preparation requires a well-curated and am-

biguous dataset which can be used for model building 

using machine learning. Data mining literature for epi-

tope regions of Plasmodium species available in pub-

lished literature was evaluated. Plasmodium epitopes 

were extracted and their allelic association was also 

collected from published literature with experimental 

validation 14-16. The datasets 1 and 2 comprised 54 and 

16 cytotoxic T cell epitopes, respectively obtained 

from studies conducted by Wizel et al 17, Doolan et al 
14 and Carralot et al 16. The literature showed the pep-

tide sequence to be naturally associated with HLAA2, 

A3, B7, B8 or DRB1 allele. In the present study, da-

taset 1 was used as the main input data where 80% of 

the dataset was used for training and the remaining 

20% for testing. Dataset 2 was used for validation of 

models. The datasets were subjected to feature selec-

tion and the dipeptide composition profile was created 

as described below. The details of preprocessing are 

also given below. The step by step guide on using 

WEKA and installing the library intended for machine 

learning are available at https://wekatutorial.com/# 

functionalityandfeatures. 
 

Input features 
Feature selection: Input features were generated us-

ing a widely used peptide feature, mainly dipeptide 

composition. Dipeptide composition accommodates 

more information due to longer vector length of 400 
18,19. The present study highly relies on the feature for 

classification. The Pfeature (https://webs.iiitd.edu.in/ 

raghava/pfeature/) is a popular webserver for computa-

tion of features from peptide sequences. The average 

score was calculated from the 400 dipeptide composi-

tion features extracted from Pfeature. It provides the 

composition of each of the possible 400 dipeptides 

formed by 20 amino acids. The simple dipeptide com-

position profile was created for the dataset using 400 

dipeptides for alleles. The methods are depicted in a 

workflow (Figure 1). 
 

Preprocessing of dataset 
The average dipeptide score was calculated for each 

HLA allele which was used for further processing. The 

profile for the input data was extracted from Pfeature 

for each of the peptide sequences of datasets 1 and 2. 

Average values were used to generate a new table. The 

minimum number of sequences used for dipeptide 

composition analysis was set to 6 sequences. Two se-

quences associated with B7 and B8 allele did not fulfil 

the criteria which were removed and not considered for 

further analysis. Another sequence from dataset 1 was 

not considered since the allelic information of the pep-

tide was not available. 
 

Attribute discrimination method 
The stable version of WEKA 3.8 was downloaded 

and installed along with the associated packages 20. The 

reduction in number of attributes was possible by using 

the "select attributes" menu of WEKA.  
 

Machine learning based prediction models 
Cross-validation: A five fold cross-validation tech-

nique was employed for training, testing and evalua-

tion. In summary, the technique involves dividing the 

dataset into five equal parts. Four sets would be used 

for training, while the remaining set for testing. After 

iterating five times, each set is used for testing. 
 

Results and Discussion 
Compositional analysis of peptides was carried out 

in the study and it was observed that the dipeptide 

which was classified as HLA A2 in the dipeptide com-

position analysis  had 63% hydrophobic residues (Ta-

ble 1) and 13% acidic residues (Cutoff >1.4) whereas 

HLAA3 had only 63% hydrophobic residues (Cutoff  

>1.6). Similarly, dipeptides from DRB1 epitopes had 

43% hydrophobic and 22% basic residues (Cutoff 

>1.8) while those classified as non-epitopic had only 

37% hydrophobic residues and 16.6% acidic residues 

(Table 1). The difference in physicochemical proper-

ties suggested that the information can be used for 

classification. 
 

Machine learning based classification 
The analysis of dipeptide composition profile may 

be exploited for purpose of classification of malaria 

cytotoxic T cell epitopes into allele based sequence 

specific features where the local order of amino acids 

is preserved. Machine learning based classification was 

Figure 1. Methodology workflow used in the study. 
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implemented to exploit the sequence specific features 

for the classification and prediction of malaria epito-

pes. 
 

Dipeptide composition based model 
A Pfeature peptide based prediction was constructed 

to obtain the possible dipeptide combinations in a 400 

sized vector. The average score was considered as in-

put feature in WEKA. Individual prediction model was 

built from feature set and compared after normaliza-

tion. 

The large number of attributes (400) needed to be 

reduced and filtered to keep only the relevant attrib-

utes. For dimensional reduction, the WEKA CfsSub-

SetEvaluator Algorithm and the Ranker Search Method 

were used. The Correlation Attribute Evaluator was 

applied sequentially and the top 26 attributes were 

ranked and used for further analysis (Table 2). 
 

Comparison of machine learning methods 
Ensemble classifiers have been known to be advan-

tageous and outperform single decision tree based clas-

sifiers by having higher accuracies and smaller predic-

tion errors. In the current study, simple logistic regres-

sion or SVM based methods were not suitable as clas-

sifiers because of class overlap. Hence, it was decided 

to use meta classifiers. 

The boosting algorithms are a way of combining 

many weak algorithms into an additive logistic regres-

sion. AdaBoost uses a majority vote in the weighted 

version of sequentially applied classifiers. The Ada-

Boost meta-estimator fits the classifier on the dataset 

adjusting weights for instances which are incorrectly 

classified. AdaBoost and Logitboost generally achieve 

comparable level of performance and result in high 

degree of accuracy.  
 

AdaBoostM1 
An ensemble technique of boosting has been used 

with a number of weak classifiers to create a strong 

prediction based classifier. Its similarity with Random 

Forest is that it uses decision trees for final classifica-

tion within the forest. The decision trees in Ada-

BoostM1 have a depth of 2 leaves.  
 

 

Iterative Classifier Optimizer  
Another meta classifier uses neural network and 

compares the actual classification of the record and 

optimizes it. The  algorithm  is  modified  for  further  

iterations  by  feedback  error system obtained from the 

classification of the first record.  
 

Iterative Classifier Optimizer Algorithm from meta classifi-

er of WEKA 
This algorithm chooses the number of iterations 

(Default of L=50) which was found to be suitable for 

classifying. Logitboost was selected as the default Iter- 

 

Table 1. Dipeptide composition profile generated from dataset 1 
 

 Distribution of allele specific dipeptide composition calculated from average score (Using Pfeature and Peptide 2.0 
webserver) 

 

Allele class Dipeptide 
Selected Cutoff 

above threshold 

Hydrophobic residue 

(%) 

Acidic residue 

(%) 
Basic residues 

HLA A2 
VL,TN,NV,NL,LV,LS,LP,LL,LG,LF,LD,LA 

GN,GL,FL,EP,EE,DL,AL 
1.4 63% 13% None 

HLA A3 AC,AG,AY,CA,FI,GL,IF,LA,LL,YK 1.6 63% none None 

DRB1 

YM,YI,YH, VR,VN,SS,SN,RK,RG, 

NI,NL,NN,LK,KK,KI,KF,IY,IV,IS,II,IA,HF,GN 
FR,FS,FK,FF,AS,AN 

1.8 43% none 22% 

Non-epitope  
AD,AV,DG,DS, FS,GG,GS,GT, 

LG,LI,MY,VD 1.8 37.5% 16.6% None 

 

Table 2. Feature selection using WEKA CfsSubSetEvaluator 

Algorithm for selecting attributes and ranking by Correlation 
Attribute Evaluator and Ranker Search Method 

 

No. Dipeptide Score 

1 AV 0.165 

2 DV 0.165 

3 LG 0.165 

4 LI 0.165 

5 AL 0.165 

6 GL 0.165 

7 IL 0.165 

8 LV 0.165 

9 LL 0.165 

10 VS 0.165 

11 SF 0.165 

12 YK 0.165 

13 FL 0.165 

14 AC 0.155 

15 LK 0.155 

16 NF 0.155 

17 VR 0.155 

18 AN 0.155 

19 FF 0.155 

20 FK 0.155 

21 II 0.155 

22 GN 0.155 

23 IV 0.155 

24 KF 0.155 

25 NL 0.155 

26 SS 0.155 
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ative Classifier for cross-validation or a percentage 

split evaluation. A 10 fold cross-validation was per-

formed for the required number of runs with default of 

R=1. 
 

Model development 
The training model was developed by preprocessing 

with unsupervised filter class and converting string 

attributes into numeric class. The StringToWordVector 

filter creates a separate dictionary and merges them. 

The file was saved and various classifiers were tested. 

The confusion matrix for the meta classifier performed 

better than others and was able to correctly classify 14 

attributes (53.8%) (Table 3). The Area Under the ROC 

Curve (AUC) of the model for being classified as 

HLAA2, HLAA3, DRB1 or non-epitopic was 0.73, 

0.80, 0.68 and 0.71, respectively. Additional class of 

HLAA2/HLAA3 indicated that few peptides were clas-

sified as both classes with AUC of 0.68 and some pep-

tides as HLAA3/DRB1 with AUC of 0.80 (Table 4). 

The precision value was1.0 for meta classifier. 
 

Performance of model 
The model classifier performed an internal 10 fold 

cross-validation procedure (set to 10) which was in-

built in the Iterative Classifier Optimizer algorithm of 

meta classifier. Hence, the model obtained was a 10 

fold cross-validated model. 

Validation for this model was done using data ex-

tracted from an independent study15 and annotated as 

dataset 2. Data validation for dataset 2 was done by 

extracting features and performing similar processing 

as described in methods. All the 36 instances were used 

for feature selection. It was subjected to cross-

validation and 30 instances were correctly identified 

(83% accuracy). 
 

Performance of model on independent dataset 
The performance of model was evaluated on dataset 

obtained from independent study. Pre-processing was 

performed as mentioned above and the OneR classifier 

was used with "re-evaluate model on current test set" 

option of WEKA to obtain 100% accuracy, ignoring 6 

instances in the classification of HLAA2 with ROC 

value of 0.500 and precision of 1.00. The accuracy for 

the model during performance evaluation was skewed 

toward classification of HLAA2 since it included those 

alleles in the dipeptide composition profile of the da-

taset. 
 

Performance of model using SMOTE 
Synthetic Minority Over-sampling TEchnique (SM-

OTE) gives improved performance by oversampling 

without losing the data. The SMOTE filter was applied 

(400%) to increase the weight of classes and the num-

ber of attributes increased by 8 instances totalling 34. 

Out of this, 18 were correctly classified (52.9%). The 

AUC values obtained were 0.906 and 0.627 for classi-

fying allele HLAA3 and DRB1, respectively. Other 

alleles could not be classified. Thus, SMOTE filter for 

oversampling was not suitable for the study and did not 

perform well. 
 

Conclusion 
 

The primary sequence based information preserves 

the local order of molecules which is the superior 

method of evaluation. In the current study, Iterative 

Classifier Optimizer algorithm performed better than 

Table 3. Confusion matrix generated using WEKA Iterative Classifier Optimizer Algorithm for 26 instances (14 were 

correctly classified) showing 6x6 confusion matrix to describe six classes assigned a to f (Sum of diagonals indicated the 
number of correctly classified instances) 

 

a b c d e f  Class 

1   2   a HLAA2 

 1  1   b HLAA3 

  1 5   c HLAA2/HLAA3 

   9   d DRB1 

   1 1  e HLAA3/DRB1 

   3  1 f Non-epitopic peptides 

 

 

Table 4. Accuracy of training model by class using Iterative Classifier Optimizer 
 

Details of training model developed for classification of malaria epitope by class 

TP rate FP rate Precision Recall Fmeasure MCC ROC area Class 

0.333 0.000 1.000 0.33 0.500 0.554 0.739 HLAA2 

0.500 0.000 1.000 0.50 0.667 0.693 0.802 HLAA3 

0.167 0.000 1.000 0.167 0.289 0.365 0.688 HLAA2/HLAA3 

1.000 0.706 0.429 1.00 0.600 0.355 0.686 DRB1 

0.500 0.000 1.000 0.50 0.667 0.693 0.802 HLAA3/DRB1 

0.250 0.000 1.000 0.25 0.400 0.469 0.710 Non-epitope 
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Logitboost or AdaBoostM1. Further studies will help 

in developing a model and will further improve identi-

fication of malaria epitope. The unique characteristics 

of the biology of the parasite and the sequence varia-

tion therein would make machine learning technique 

ideal for Artificial Intelligence (AI) based application 

for fast and rapid detection of epitopes. 
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