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Abstract 
 

Background: MicroRNAs (miRNAs) are implicated in various biological processes in-
cluding anticoagulation. However, the modulation of miRNA by pharmacological in-
tervention such as warfarin treatment in patients receiving warfarin has not been dis-
closed yet. The aim of this study work was to assess the effect of warfarin drug on 
expression level of mir-133a-3p in patients with mechanical heart valve replacement. 
 

Methods: In this research, the expression level of miRNA-133a-3p was analyzed in 
Peripheral Blood Mononuclear Cells (PBMCs) from mechanical valve replacement 
patients who had received warfarin for at least 3 months continuously. Quantitative 
RT-PCR method was used for this assay. 
 

Results: Our findings indicated a significant diffrence between the rate of miR-133a-
3p expression in individuals receiving warfarin and the control group (p<0.01). There 
was also a statistically significant difference in miR-133a-3p expression in patients with 
different ages (p<0.05) suggesting that the rate of miR-133a-3p expression in persons 
receiving warfarin is related to age. However, other variables like warfarin dose, In-
ternational Normalized Ratio (INR), gender, and Body Mass Index (BMI) were not 
significantly effective on the miR-133a-3p experssion rate in individuals receving 
warfarin.  
 

Conclusion: Based on our results, it can be concluded that miR-133a-3p is involved in 
the coagulation pathway. The recent result indicates that warfarin affects the expres-
sion of miR-133a. This expression may be potentially important for treatment by anti-
coagulants. Awareness of the time course of miRNA expression profile can improve ef-
ficiency of response to warfarin. 
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Introduction 
 

The cardiovascular diseases are the most common 
causes of mortality worldwide. These artery diseases 
including coronary, cardiac ischemia, valvular failure, 
congenital heart defects, and heart diseases are induced 
by other diseases such as diabetes. Valvular disorder is 
one of the heart diseases which may lead to cardiac 
dysfunctions and, ultimately, may result in heart trans-
plantation. One therapeutic strategy in these patients is 
heart valve repair and in the case of inefficacy of the 
repair, valve replacement including the biologic and 
mechanical valves should be considered. One of the 
most important challenges for this valve replacement is 
the risk of thrombosis. Patients with valve replacement 
of the mechanical type need to receive anti-coagulation 
drugs like warfarin for a lifetime due to the high risk of  
 

 
 
 

 
thrombosis 1,2. The use of warfarin significantly re-
duces the thrombolytic damages 3,4. 

A vitamin K antagonist called Warfarin reduces 
blood clotting through disturbance in vitamin K cycle 
and also, it interrupts the synthesis of the coagulation 
factors IX, VII, II, and X through inhibiting VKORC1. 
5,6. Since the administration of warfarin is associated 
with a high risk of hemorrhage, its function must be 
repeatedly assessed via the laboratory test of Interna-
tional Normalized Ratio (INR). Increase of individuals’ 
hypersensitivity to warfarin consumers in different 
communities promotes the risk of hemorrhage and the 
possible subsequent death in some cases. Moreover, it 
has been observed that dosage adjustment basis on INR 
has not been successful in about 55% of cases 7. The 
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initiation of the primary dose of warfarin can be esti-
mated based on genetic testing which leads to reduc-
tion in the time required for achieving the desirable 
INR. This time requirement can decrease the risk of 
creation of high INR (associated with haemorrhage) or 
low INR (associated with thrombosis). Due to  genetic 
differences among individual patients, the prescription 
and administration of a specific dose of warfarin for all 
patients is not possible. So far, most studies have fo-
cused on factors such as genotype (genetic variant) and 
demographic differences (such as age, gender and 
weight) which may potentially affect the warfarin dos-
age. However, a few studies have shown the role of re-
gulatory factors of genes involved in the metabolism of 
this drug 8-10. 

MiRNAs are a group of small single strand non-
coding RNAs which interrupt the expression of genes 
in the post-transcription level. 

The essential role of miRNAs in various biological 
processes such as inflammation, DNA repair, response 
to oxidative stress, apoptosis, cancer, and cellular growth 
and the post-transcription regulation of gene expression 
has been confirmed 11,12. The inhibitory role of miR-
133a in the pathogenesis of Gall Bladder Carcinoma 
(GBC) via gene targeting 13 and miR-133a may exert 
anti-tumor effects on a variety of cancers. The role of 
miR-133a-3p in regulating genes such as CYP2C9 and 
VKORC1 in different patients has been investigated 
14,15. Nonetheless, the effect of warfarin on the expres-
sion rate of miR133a-3p has not been approved. Con-
sequently, this study tried to compare the rate of rela-
tive expression of miR-133a-3p in mechanical valve 
replacement patients receiving warfarin to patients in 
control group and also to investigate its correlation 
with the received warfarin dose.  
 

Materials and Methods 
 

In this experimental research, the participants of this 
study were mechanical valve replacement patients re-
ferred to heart center of Afshar hospital in Yazd prov-
ince (aged 45+ years) who had received warfarin for at 
least 3 months with no change in warfarin dose over 
the last month with an INR limit of 2-3.5. The case (12 
patients) and control (10 patients) groups were matched 
by sex and age (Table 1).  

Patients’ demographic information was collected by 
interview and through their medical records. Having 
obtained informed consent, all the patients voluntarily 
participated in the study with no treatment limitations 
for the patients during the completion of the study.  
 

Separation of peripheral blood mononuclear cells from 
blood samples by density gradient centrifugation  

Separation of PBMCs from whole blood is usually 
accomplished through density gradient centrifugation 
using Ficoll. After the centrifugation step, Ficoll sepa-
rates layers of blood, with lymphocytes and monocytes 
under a layer of plasma. Peripheral blood was collected 
in BD Vacutainer spray-coated K2EDTA Tubes. With-

in 2 hr of blood aspiration, PBMCs were isolated by 
using Ficoll gradient centrifugation. Buffy coat layer 
containing Peripheral Blood Mononuclear Cells (PBM-
Cs) was stored at -80°C until use.  
 

RNA extraction and purification 
Blood samples of patient were used for RNA ma-

nipulation. Firstly, for miRNA133a-3p (5’-UUUGGU-
CCCCUUCAACCAGCUG-3’) detection, blood sam-
ples were collected in EDTA-K2 tubes and incubated 
at room temperature during 1 hr. A  two-step centrifu-
gation (4°C at 820×g for 10 min, then 4°C at 16000×g 
for 10 min) was done and then the supernatant phase 
was transferred to RNase/DNase-free tubes and stored 
at -80°C 15. Total RNA was extracted by plasma sam-
ples using the column RNA isolation Kit (Denazist, 
Iran) according to the manufacturer's instructions. The 
purity and concentration of RNA were determined by 
OD 260/280 readings using a Nanodrop spectrophoto-
meter (Nanodrop, Thermo Scientific, Germany). RNA 
integrity was determined by capillary electrophoresis 
(Biorad, Germany). The quantity and quality of RNA 
was assayed by using nanodrop spectrophotometer 
(Nanodrop, Thermo Scientific, Germany) and 2% 
agarose gel electrophoresis, respectively. In the case of 
the presence of two 18S and 28S ribosomal RNA 
bands, the quality of the extracted RNA was approved. 
The analysis of miRNA-133a expression in PBMCs 
was performed by miRNA synthesis kit using the Uni-
versal RT miRNA PCR, Polyadenylation and cDNA 
synthesis kit (Pars Genome Co., Iran). cDNA was di-
luted 5× and assayed in 20 μl PCRs according to the 
protocol for RT miRNA PCR.  
 

Quantitative real time PCR analysis 
Expression analysis of miRNA-133a was carried out 

in an Applied Biosystem Step One plus Real-Time 
PCR System (ABI, USA). PCR MasterMix for Syber 
Green Assays (Hot Tag EvaGreen, ROX, GeneAll, 
South Korea) was used to monitor light cycles of PCR, 
according to the manufacturer’s protocol. The amplifi-
cation condition was 95°C for 5 min, 40 cycles at 95°C 
for 15 s and 60°C for 1 min. Melting curves analysis 
was performed after each reaction to exclude non spe-
cific amplifications. The optimal baseline and threshold 

Table 1. Demographic information of the patients 
 

Characteristics 
Warfarin treated 

group (n=12) 
Non treated 

group (n=10) 

Age (years) meanSD 55.28 54.167.3 

Height (cm) meanSD 155.134.56 169.166.64 

Weight (kg) meanSD 69.166.1 68.665.2 

Body mass index, kg/m2 meanSD 24.271.59 24.12.6 

INR meanSD 2.30.39  

Male/female (n/n) 8/4 4/6 

Warfarin (mg/per week) meanSD 34.1610.53  
Aspirin, n% 58.3  
Statin, n% 25  
Hypertension, n (%) 16.6  
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values were determined using automatic CT function 
available. Relative gene expression levels for the three 
replications were calculated using the 2-∆CT method 16. 
Melting curve was used to determine the specific am-
plification of the specific gene segments. 
 

Data analysis 
The measurement of the cDNA samples was per-

formed in duplicate. After obtaining the pair CT for 
each sample, their means were calculated. By import-
ing the data to SPSS19, the outliers were first identified 
and excluded from the study along with their control 
samples. The results were measured as mean±SD. T-
test and One-way ANOVA were used to compare the 
means between the two groups. Each test was repeated 
at least twice and performed independently.  
 

Results 
 

The fluorescent light was continuously monitored 
and the temperature was gradually increased from 60 to 
95C by the device. The melting curve of miR-133a-3p 
and snRNA-U6 was obtained as a single peak curve 
indicating the proliferation of the intended specific 
product and lack of its genomic DNA contamination 

(Figures 1A and 1B). Furthermore, the qPCR product 
was placed on 2% Agarose Gel. A molecular 50 bp 
DNA Ladder was used in the reaction above and frag-
ments shorter than 50 base pairs were considered as 
specific targets. There was only one specific band (ap-
proximately 48 bp) in each of the reactions done with 
primers miR-133a-3p and snRNA-U6 confirming the 
specificity of PCR products in our sample (Figure 2). 

A comparison of the mean of miR-133a-3p expres-
sion in patients receving warfarin and the patients in 
control group demonstrated that the expression levels 
were higher in warfarin receivers indicating a signifi-
cant differnce between the two groups (p<0.01) (Figure 
3). 

A comparison of mean of miR-133a-3p expression 

rate between two different age groups receiving warfa-
rin demonstrated that the expression levels were higher 
in age group (51-70) indicating a significant difference 
between the two groups (p<0.05) (Figure 4). 

Figure 1. A) The melting curve of snRNA-U6 and B) miR-133a-3p 
A on the basis of temperature (horizontal axis) and diffenential  
fluerescent signal (vertical axis) received from the device. 

Figure 2. Different concentrations of RT-PCR pruduct of 2% agarose 
electrophoresis agarose. Line 1: 4000 ng/µl; Line 2: 2000 ng/µl; Line 
3: 1000 ng/µl; Line 4: 700 ng/µl and Line 5: 350 ng/µl. 

Figure 3. Comparison of means of miR-133a-3p expression rate 
between warfarin treated group and non-treated group. The differ-
ence was statistically significant ** (p<0.01). 

Figure 4. Comparison of means miR-133a expression level rate 
between two different age groups receiving warfarin. The difference 
was statistically significant (p<0.05). 
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Other variables like warfarin dose, gender, INR and 
BMI were not significantly effective on the miR-133a-
3p experssion rate in individuals receving warfarin.  
 

Discussion 
Due to individual differences, the patients’ response 

to warfarin is different. Some studies have indicated 
that at least 30% of the difference in dosage is attribut-
ed to genetic variants in CYP2C9 and VKORC1 genes 
15. Also, 1-7% of dose changes required for warfarin is 
related to CYP4F2 gene 17. On the whole, 60% of the 
changes is attributable to a combination of various fac-
tors such as height, weight, and the genetic variants in-
cluding VKORC1, CYP4F2, and CYP2C9. In any case, 
about 30-40% of drug dosage changes are not known 
yet 18. 

It has been observed that diseases and different 
compounds affect the expression of miRNAs. Expres-
sion of multiple miRNAs in the circulation of the 
plaque for Unstable Angina (UA) patients showed the 
important roles of this drug on regulating signal path-
ways for the pathogenesis of UA 19. The expression 
levels of miR-22 and miR-133a-3p significantly in-
creased and decreased, respectively by induction of 
cardiomyocyte hypertrophy by using angiotensin II 
(hypertrophy inducer). Nonetheless, after treatment of 
cardiomyocytes with atorvastatin, the expression level 
of miR-22 decreased significantly, but the expression 
level of miR-133a-3p did not change significantly 20 
which is in agreement  with our results. The physical 
features of individuals (age, gender, and race) affect 
the expression of both mRNA and miRNA. It has been 
observed that the mRNA and miRNA content of plate-
let varies with respect to gender. Simon et al showed in 
their study that miR-223 is one of the nine miRNAs 
that are different in men and women. Interestingly, of 
seven mRNAs which vary in the two genders, three 
were the potential targets of miR-223 21.  

In this study, different samples derived from differ-
ent age group were used. Nevertheless, there was no 
significant difference between the groups of men and 
women who received warfarin in our study which 
could be caused by the nature and function of drudge. 
In this work, any correlation between miR-133a-3p 
expression and BMI was observed which is in agree-
ment with similar works 21,22. There was a significant 
difference in miRNA expression level in our study be-
tween the two different age groups receiving warfarin. 
Regarding the profile expression of miRNAs related to 
age in regulating the expression of genes involved in 
drug metabolism, the results of two studies indicated 
that the expression of miRs-128, -106a, -18a, -484, 
548a-3p, and 425 decreased significantly in both plate-
let and PBMC 21,23. It seems that a wide range of phys-
iologic pathways contribute to the age and life span of 
individuals and it is believed that the genetics of age is 
complex. Normalization of miRNA expression with 
internal control is of utmost importance. Some studies 

show that the simultaneous use of several internal con-
trols for exactly measuring the changes in expression is 
more suitable 24,25. Unfortunately, snRNA-U6 did not 
manifest a stable expression in our study. Regarding 
the role of VKORC1 gene in the coagulation pathway 
and prevention of vascular calcification, it seems that 
warfarin has some effect on the expression of miR-
133a.  

Furthermore, some studies have indicated that war-
farin exerts an anticarcinogenic and anti-inflammatory 

effect through inhibiting proteins of the signaling path-
way (mitogen-activated protein kinase (MAPK/ERK) 
that regulate various activities of this pathway includ-
ing cell proliferation, mitosis, cell motility, metabo-
lism, and apoptosis 26. It has been observed that warfa-
rin in low concentrations has anti-inflammatory effects 
due to inhibition of secretion of Il-6 and the messaging 
path Tyro3/Gas6 while it is pre-inflammatory in high 
concentrations 27,28. It seems that miRNAs contribute to 
the regulation of genes involved in ADME of drugs 
under physiologic conditions like inflammation. Addi-
tionally, the regulation of the expression of other genes 
involved in warfarin metabolism like CYP2C9 gene by 
miR-130b related to inflammation has been indicated 
29. Considering the controlling role of miR-133a-3p in 
the coagulation pathway, the recent result indicates that 
warfarin affects the expression of miR-133a. This ex-
pression may be potentially important for treatment by 
anticoagulants. 
 

Conclusion 
 

Awareness of miRNA expression patterns is im-
portant in identifying preventing and therapeutic strat-
egies in patients receiving warfarin after mechanical 
heart valve replacement that are at risk of thrombosis 
and in selection of suitable dose of warfarin as a prog-
nosis and diagnosis marker. An awareness of the time 
course of miRNA expression profile can improve effi-
ciency of response to warfarin. Type of response to 
drug can help to effective treatment by an awareness of 
the course of expression of miRNAs. These results 
show that miRNAs as molecular interference regulators 
are involved in regulation and modulation of several 
genes  implicated in homeostatis and hemostasis in 
normal, pathogenic and pharmaceutical conditions, so 
they influence gene expression of target genes.  
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