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Abstract 
 

Background: Breast cancer is the most common malignancy worldwide. Doxorubicin 
is an anthracycline used to treat breast cancer as the first treatment choice. Never-
theless, the molecular mechanisms underlying the response to Doxorubicin and its side 
effects are not comprehensively understood so far. We used systems biology and bio-
informatics methods to identify essential genes and molecular mechanisms behind the 
body response to Doxorubicin and its side effects in breast cancer patients.  
 

Methods: Omics data were extracted and analyzed to construct the protein-protein 
interaction and gene regulatory networks. Network analysis was performed to iden-
tify hubs, bottlenecks, clusters, and regulatory motifs to evaluate crucial genes and 
molecular mechanisms behind the body response to Doxorubicin and its side effects.  
 

Results: Analyzing the constructed PPI and gene-TF-miRNA regulatory network 
showed that MCM3, MCM10, and TP53 are key hub-bottlenecks and seed proteins. 
Enrichment analysis also revealed cell cycle, TP53 signaling, Forkhead box O (FoxO) 
signaling, and viral carcinogenesis as essential pathways in response to this drug. Be-
sides, SNARE interactions in vesicular transport and neurotrophin signaling were iden-
tified as pathways related to the side effects of Doxorubicin. The apoptosis in-duction, 
DNA repair, invasion inhibition, metastasis, and DNA replication are sug-gested as 
critical molecular mechanisms underlying Doxorubicin anti-cancer effect. SNARE in-
teractions in vesicular transport and neurotrophin signaling and FoxO signaling path-
ways in glucose metabolism are probably the mechanisms responsible for side effects 
of Doxorubicin.  
 

Conclusion: Following our model validation using the existing experimental data, we 
recommend our other newly predicted biomarkers and pathways as possible mole-
cular mechanisms and side effects underlying the response to Doxorubicin in breast 
cancer requiring further investigations. 
 
 
Keywords: Breast cancer, Doxorubicin, Protein-protein interaction network, Regulatory motif, 
Systems biology 

 
 
 

Introduction 
 

Breast cancer is the most common cause of cancer 
and mortality caused by cancers in women worldwide 
1. Four subtypes of this cancer include luminal A and 
luminal B [expressing the Estrogen Receptor (ER)], 
basal-like, and Human Epidermal growth factor Recep-
tor 2 (HER2)-enriched (without ER expression). This 
cancer is a heterogeneous disease at the molecular lev- 
 

 
 
 
 
el. The characterization influence biologically-directed 
therapies and treatment de-escalation 2. Breast cancer is 
often curable early, but the metastatic form is almost 
mortal due to therapeutic resistance 3. The estrogen 
hormone and its receptor play essential roles in breast 
cancer progression. The dysregulation of the Estrogen 
Receptor (ER) is attributed to two-thirds of all breast 
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cancers. The ER receptor is one of the therapeutic tar-
gets for ER+ breast cancer 4. In clinical diagnosis, 75% 
of breast tumors are ER+ 5; however, the role of ER 
signaling in metastasis of breast cancer remains poorly 
understood. Several studies have shown an adverse 
effect of ER signaling on motility and invasion of cells 
6,7, while a few studies suggested a positive effect of 
ER signaling on motility and invasion 8,9. 

Doxorubicin (DXR) is an anthracycline and chemo-
therapeutic drug isolated from Streptomyces peucetius 
10. This drug is used to treat several cancers, including 
breast, gastric, lung, ovarian, thyroid, sarcoma, non-
Hodgkins and Hodgkins lymphoma, multiple myelo-
ma, and pediatric cancers 11,12. DXR induces Reactive 
Oxygen Species release (ROS) that ROS lead to DNA 
damage, lipid peroxidation and membrane damage, and 
apoptotic cell death pathways 13. DXR is among the 
chemotherapy drugs approved to treat ER+breast can-
cer. The response rates to DXR in patients exposed to 
DXR for the first time is reported to be 48%, and for 
more than once is 28% 14.  Nevertheless, little is known 
about the molecular basis of its effect on cell pro-
liferation, estrogen/estrogen receptor signaling, and 
cell cycle progression 15-17. Some investigations have 
even reported cardiotoxic side effects for DXR that 
their molecular mechanisms remain to be deciphered in 
detail 18.  

Systems biology and network-based methods are re-
cently used to decipher the molecular mechanisms be-
hind drugs and their possible side effects. Several such 
studies rely on network topology analysis to identify 
the effect of chemotherapy on various cancers. These 
networks can help understand how drugs influence the 
disease at the molecular level and identify the crucial 
gene sets underlying various drug effects 19-22. Several 
network analysis studies of drug-disease associations 
have been used to predict drug side effects with high 
accuracy. Global expression data-based computational 
approaches can utilize gene interaction information for 
modeling Protein-Protein Interaction Networks (PPINs) 
and Gene Regulatory Networks (GRNs). 

Identifying network modules and their biological 
functions helps decipher the molecular mechanisms of 
drug effects, identify new drug targets, predict body 
response to drugs, and organism behavior 23-25. Gene 
regulatory networks contain information about regula-
tory elements of gene expression. These networks can 
identify regulatory programs and help understand the 
molecular basis of drug pharmacodynamics and even 
pharmacogenetics 26. In 2020, a study analyzed the 
gene regulatory network of breast cancer and identified 
gene-specific personalized drug treatments 27. Rao 
Zheng et al also constructed a gene regulatory network 
of diabetic nephropathy; they recognized essential 
genes using this method. These findings provide targets 
for drug development 28. Adel Aloraini et al, in 2018, 
performed the identification of breast anti-cancer 
Docetaxel drug targets (DAXX and FGR1) using anal-

ysis of gene regulatory network and molecular docking 
29. 

Molecular mechanisms mediating in breast cancer 
treatment by DXR and the mechanisms underlying its 
side effects are not still comprehensively understood. 
Therefore, in this study, we used protein-protein inter-
action and gene regulatory networks to identify essen-
tial molecular mechanisms and biological functions in 
response to DXR and the molecular mechanisms re-
sponsible for its side effects. We utilize a systems biol-
ogy approach and bioinformatics analysis of protein-
protein interaction network and Gene Regulatory Net-
works (GRNs) on omics data of breast cancer treatment 
using the DXR chemotherapeutic agents. Here, we 
utilize the protein-protein interaction modules and gene 
regulatory network motifs to predict and identify drug 
targets, Gene Ontology (GO) and biochemical path-
ways mediating in response to ER+ breast cancer and 
mechanisms underlying its side effects. 
 

Materials and Methods 
 

Data collection 
Datasets on breast cancer (MCF-7 cell)/DXR were 

searched and collected from the Gene Expression Om-
nibus (GEO) database (http://www.ncbi.nlm.nih.gov/ 
geo/) and proteomic publications 30,31. Three datasets 
(GSE124597 (GPL 15207), GSE39870 (GPL 571), and 
GSE13477 (GPL 570) were selected to compare breast 
cancer (MCF-7 cell line)/DXR and non-treatment 
breast cancer (MCF-7 cell line) for analysis in this 
study. Figure 1 shows the workflow of this study. 
 

Raw data processing and Data analysis  
The datasets' Differentially Expressed Genes 

(DEGs) were analyzed and identified using GEO2R 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/), which nor-
malized the data using the GEO query and limma R 
package. The differentially expressed genes were iden-

Figure 1. Study workflow. 

https://pubmed.ncbi.nlm.nih.gov/?term=Aloraini+A&cauthor_id=29449773
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tified according to p-value<0.05 and Fold Change cut-
off of >0.5 and <-0.5 as a threshold. The genes ob-
tained from the three datasets and proteomic publica-
tions (mass spectroscopy on MCF-7 treated compared 
to untreated) were used for further analysis. 
 

Protein-protein interaction network construction 
The shared DEGs between the three GSE datasets 

were obtained using the Venn diagram Tool 32 and un-
ioned with DEGs data extracted from proteomic publi-
cations. We applied the STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins, https://string-
db.org) with a  confidence score of more than 0.7 and 
Bisogenet app [Human Protein Reference Database 
(HPRD)] to map the interactions of DEGs obtained 
from the shared bodes among the three GSE DEGs and 
unioned with proteomic publications. STRING is a 
biological database of known and predicted protein-
protein interaction (physical and functional) for many 
organisms 33. Bisogenet could build a relation between 
genes and their products in a fast and user-friendly 
manner and has multiple applications, including ge-
nomics information, protein-protein interactions, pro-
tein-DNA interactions, and gene ontology 34. Bisogenet 
is available in Cytoscape software. 
 

Topological network analysis 
The PPI networks obtained from STRING and Bi-

sogenet app were merged using Cytoscape software to 
analyze the interactions and connections between pro-
teins (http://www.cytoscape.org/). Cytoscape software 
in bioinformatics for visualizing biomolecular interac-
tion networks (protein-protein, protein-DNA, and ge-
netics interactions) was available for humans and mod-
el organisms 35.  

This software contains several plugins for functional 
analysis in PPI networks. Cytoscape network analyzer 
is a tool that determines the degree and betweenness-
centrality of every node as the hub and bottleneck 
genes. The hubs are node proteins with many interac-
tions, and bottlenecks are nodes with high betweenness 
centrality 35,36. Finding PPIN hubs and bottlenecks is 
used to candidate drug targets when drug designing. 
Besides, it is used to candidate possible disease mark-
ers 37,38. We selected the top 10% of nodes with a high-
er degree and betweenness as hub-bottlenecks for fur-
ther analysis. 
 

Molecular complex detection (MCODE) cluster sub-
networks  

The STRING and Bisogenet PPI (HPRD database) 
networks were merged, and the resulted network was 
used to identify clusters using the MCODE Plug-in. 
The MCODE algorithm, one of the Cytoscape plugins, 
was used to identify highly interconnected sub-net-
works with parameter settings, including Degree Cut-
off=2, Node Score Cutoff=0.2, K-Core=2, and Max-
Depth=100 39. We considered the MCODE score>3 
and the number of nodes>10 as the final clusters' cut-
off criteria.   
 

Functional enrichment analysis for hub-bottlenecks and 
MCODE clusters 

The enrichment analysis for Biological process, mo-
lecular function, and cellular component and KEGG 
biochemical pathways (Kyoto Encyclopedia of Genes 
and Genomes) were performed for the top 10% of the 
hub and bottleneck genes using the DAVID Tool (Da-
tabase for Annotation, Visualization, and Integrated 
Discovery; https://david.ncifcrf.gov/). DAVID is a bio-
informatics resource for functional interpretation of a 
list of genes and can identify GO terms and visualize 
genes on the KEGG pathway 40. The functional en-
richment analysis was then performed for pathways of 
the sub-networks using the STRING database. For the 
enrichment analysis, STRING uses known systems 
such as Gene Ontology and KEGG 41.  
 

TF-miRNA-gene regulatory networks Construction (for UP 
and down-regulated DEGs) 

The up and down-regulated DEGs among the three 
GSE datasets were identified separately using Venn 
diagram Tool 32. The identified shared DEGs were un-
ioned with up- and down-regulated proteins retrieved 
from proteomic publications results, separately. These 
up- and down-regulated genes were finally used to 
construct two separate regulatory networks for up- and 
down-regulated DEGs. The four relationships, includ-
ing TF-gene, TF-miR, miR-gene, miR-TF, were ex-
tracted using the following tools and database to con-
struct two gene regulatory networks for the gene sets. 
 

MiRNAs regulating DEGs  
The miRTarBase (http://miRTarBase.mbc.nctu.edu. 

tw/) and miRecords (http://c1.accurascience.com/mi-
Records/) databases were used for identifying miRNAs 
regulating genes and transcription factors. MiRecords 
is a database of experimentally validated miRNA-
target interaction 42. Besides, miRTarBase is a curated 
database of experimentally validated miRNA targets 
with high quality, and its miRNA-target interactions 
data are collected by receptor assay, microarray, next-
generation sequencing, and western blot 43. 
 

Transcription factors regulating DEGs 
The TFs regulating our target genes were extracted 

from the TRANSFAC (TRANScription FACtor; https: 
//genexplain.com/transfac/) and TRRUST databases 
(transcriptional regulatory relationships unravelled by 
sentence-based text-mining; https://www.grnpedia.org/ 
trrust/). TRANSFAC is a database of eukaryotic tran-
scription factors and their experimentally-proven bind-
ing sites 44. TRRUST is a curated database of human 
and mouse transcriptional regulatory networks, includ-
ing 8444 TF-target interactions for 800 TFs in humans 
and 6552 regulatory interactions for 828 mouse TFs 45. 
 

miRNAs inhibiting TFs  
The TFs regulating our target genes were fed into 

the miRTarBase and miRecords databases to obtain 
miRNAs targeting TFs. 
 

 

https://david.ncifcrf.gov/
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TFs regulating miRNAs  
For identifying TFs regulating miRNAs, we used 

the TransmiR database (http://www.cuilab.cn/trans-
mir). This database contains 3730 TF-miRNA regula-
tions among 19 species from 1349 reports manually 
curated by surveying >8000 publications and more 
than 1.7 million tissue-specific. TF-miRNA regulations 
incorporated based on ChIP-seq data 46.  
 

Network construction, motif detection and motif specific 
sub-networks generation  

In a gene regulatory network, network motifs are 
composed of nodes and regulations that connect the 
nodes. Some of these regulatory interaction patterns 
may be significantly high in some networks 47. The 
molecular interactions of motifs are necessary to un-
derstand each motif's biological function 48. To find the 
regulatory motifs in up-regulated and down-regulated 
gene networks, we used FANMOD software. The regu-
latory relationships (TF-miRNA, TF-Gene, miRNA-
Gene, and miRNA-TF) were fed into the FANMOD to 
identify the motifs with three nodes. FANMOD is a 
tool for network motifs detection with detection motifs 
in a big network and analyzes colored networks 49. This 
tool was used to build random networks 1000 times 
and compared it with the original input network. When 
randomizing the network in a constant global model, 
they indicate the frequency of motifs observed in the 
real network minus the mean of their occurrence in the 
random network divided by the standard deviation. The 
motifs with Z-score>2.0 and p-value <0.05 were se-
lected as the significant motifs. TFs, genes and miR-
NAs participating in each motif were detected. The 
motif-related sub-networks of the up- and down-regu-
lated DEGs were then merged (union) in Cytoscape 
software 3.5.1, separately. Finally, the top 10% of 
nodes with the highest degree (hub) and betweenness 
centrality (bottlenecks) were identified in the new net-
works, separately. 
 

Functional enrichment analysis of GRN  
The up- and down-regulated DEGs of motif-related 

sub-networks were selected for functional enrichment 
analysis. The sets of DEGs participating in the union of 
the up- and down-regulated motif-related sub-networks 
were enriched by the DAVID Tool. The GO terms with 
p-value <0.05 were selected as significant. 
 

Results 
 

Raw data gathering and analysis 
A total of 320 DEGs, including 126 up- and 194 

down-regulated genes, were retrieved after analysing 
the datasets (GSE124597, GSE39870, and GSE1347) 
and collecting proteomics publications data. Supple-
mentary figure 1 shows the resulted Venn diagram. 
Supplementary table S1 represents all the up- and 
down-regulated DEGs 
 

Construction of PPI network  
The PPI network was constructed for DEGs using 

STRING and Bisogenet app (HPRD database) for map-

ping interactions and then merging. The resulted net-
work consisted of 320 nodes and 2519 edges.  
 

Topological analysis 
The network analyzer tool was used to study the 

topological network properties and identify the crucial 
hub and bottleneck nodes. The topological network 
properties included the clustering coefficient of 0.385, 
the shortest path of 60362, network density of 0.045, 
and diameter of 7. Figure 2 represents a sub-network 
including the 10% of the genes with the highest degree 
and betweenness centrality as hubs and bottlenecks, 
respectively. The top ten hubs and bottlenecks are 
listed in table 1. The list of 10% of the genes with the 
highest degree and betweenness centrality are reported 
in Supplementary table S2. 
 

Module detection 
Further analysis of complexes by MCODE app in 

Cytoscape software revealed 13 sub-networks. The PPI 
sub-networks are highly connected regions of the net-
work. Three sub-networks were selected according to 
score>3 and nodes>10 (Table 2, Figure 3). The seed- 
 

Figure 2. Protein-protein interaction network. The sub-network 
constructed by Cytoscape software encompasses 10% of hubs and 
bottlenecks. The nodes' size and color are based on their degree 
value, and Nodes with dark color (red) have the highest degree. 

Table 1. Hub genes related to the breast cancer-doxorubicin network 
obtained from Cytoscape software 

 

Name genes Degree Betweenness centrality 
CDK1 111 0.06099772 
TP53 105 0.29304896 
CCNB1 82 0.03575425 
CCNA2 78 0.01470353 
CDC20 76 0.01682273 
BUB1 73 0.0130227 
PLK1 72 0.02161398 
CCNB2 71 0.00729474 
NDC80 71 0.00428032 
CDC6 70 0.014245 
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nodes of these sub-networks included MCM10 (Mini-
chromosome Maintenance 10 Replication Initiation 
Factor) for sub-network No.1, MCM3 (Minichromo-
some Maintenance 3 Replication Initiation Factor) for 
sub-network No.2, and NAPRT (Nicotinate Phosphori-
bosyltransferase) for sub-network No.3. The results are 
depicted in table 3. The nodes related to sub-networks 
are shown in Supplementary table S3. 
 

Gene ontology and KEGG pathway enrichment  
We performed Gene Ontology analyses for 10% of 

hubs and bottleneck genes using the DAVID database. 

Table 4 shows the resulting gene ontology terms. Bio-
logical process terms reveal that most of the hub genes 
participate in regulating the cell cycle. The top 10 re-
lated molecular functions identified using the DAVID 
database mediated in protein binding, nucleic acid-
binding, etc. The cellular component terms showed that 
most hub genes were present in the cytoskeleton, chro-
mosomes, etc.  

The DAVID database's KEGG pathway analysis 
demonstrated that hub and bottleneck genes were in-
volved in the cell cycle, Tumor protein 53 (Tp53) sig-
naling pathway, viral carcinogenesis, viral infections, 
Forkhead box O (FoxO) signaling pathway, and adher-
ent junctions. Besides, the KEGG pathway analysis 
showed that SNARE interactions in vesicular transport 
and neurotrophin signaling pathway were of a signifi-
cant p-value in enrichment. They could be hypothe-
sized and studied as a signaling possibly related to 
some side effects of DXR. Table 4 contains the top 
results of the KEGG pathway analysis by the DAVID 
database. Supplementary table S4 contains all gene 
ontology and pathways data related to 10% hub and 
bottleneck genes. 

The top pathway terms significantly enriched in 
sub-network No.1 included the cell cycle, p53 signal-
ing pathway, viral carcinogenesis, FoxO signaling 
pathway, and DNA replication. Biochemical pathways 
involved in sub-network No.2 included cell cycle and 
DNA replication. The nodes in sub-network No.3 were 
related to viral carcinogenesis (Table 3). 
 

TF-miRNA-gene regulatory network construction 
Identification of miRNA-gene/TF and TF-miRNA/gene 

interactions: In this study, miRNAs regulating post-
transcriptional mRNAs were retrieved from the two 
experimentally validated databases, including miRTar-
Base and miRecords. The up-regulated genes obtained 
from three GSE and proteomics data were targeted 
with 1082 miRNAs through 2103 interaction, and the 
transcription factors regulating genes were identified 
using TRANSFAC and TRRUST databases. The re-
sults revealed that 227 TFs regulated the target genes 
through 1088 interactions. The number of 1444 miR-
NAs targeted 152 TFs with 5979 interactions. TFs reg-
ulating miRNAs identified by the validated data of the  
 

Table 2. The PPI sub-networks with Score>3 and nodes>10 
 

Sub-
networks Score Density 

nodes 
Number of 

Interactions 
Seed 
node 

1 40.227 45 916 MCM10 
2 7 15 52 MCM3 
3 4.941 18 43 NAPRT 
 
 

Figure 3. The PPI sub-networks based on highly connected-regions. 
Sub-networks 1, 2, and 3 were selected based on Score>3 and 
nodes> 10. Yellow rectangles represent seed nodes. 

Table 3. KEGG pathway analysis of sub-networks 
 

KEGG ID Terms p-value Genes 
Sub-network 1    

hsa04110 Cell cycle 1.17E-22 PLK1, TTK, CDC6, CCNA2, CDC20, CCNB2, … 
hsa04115 p53 signaling pathway 1.78E-05 CCNB2, CCNB1, CHEK1, CDK1, GTSE1 
hsa05203 Viral carcinogenesis 0.013025793 CCNA2, CDC20, CHEK1, CDK1 
hsa04068 FoxO signaling  pathway 0.042317087 CCNB2, CCNB1, PLK1 
Sub-network 2    

hsa04110 Cell cycle 1.90E-04 MCM7, ORC1, MCM3, BUB3 
hsa03030 DNA replication 5.50E-04 MCM7, PRIM1, MCM3 
Sub-network 3    

hsa05203 Viral carcinogenesis 0.040723 C3, GTF2A1, MAPK1 
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TransmiR database revealed 356 TFs regulated 323 
miRNAs with 2011 interactions.  

The 194 down-regulated genes obtained from the 
three GSE datasets and proteomics data were regulated 
by 1027 miRNAs and 209 TFs through 2457 and 1458 
interactions. The number of 1451 miRNAs targeted 
133 TFs with 5862 interactions. The analysis of TFs 
regulating miRNAs by TransmiR revealed that 354 

TFs regulated 320 miRNAs with 2008 interactions 
obtained from experimentally validated data. Finally, 
the miRNA-gene, TF-Gene, miR-TF, and TF-miR in-
teractions were incorporated to construct two regulato-
ry networks in Cytoscape. The results are shown in 
table 5. Supplementary table S5 and table S6 contain 
all relationships in up-regulated and down-regulated, 
respectively. 
 

Table 4. Top 10 biological processes, molecular functions, cellular components, and KEGG pathways of 10% hub and bottleneck genes identified 
using the DAVID database (sorted based on p-value <0.05) 

 

ID Terms p-value Genes 
Biological process 
GO:1903047 mitotic cell cycle process 5.11E-26 NCAPG, MCM10, TTK, KIF11, AURKB, CDC20, CCNB2, … 
GO:0000278 mitotic cell cycle 4.81E-25 NCAPG, MCM10, TTK, KIF11, AURKB, CDC20, CCNB2, … 
GO:0022402 Cell cycle process 4.38E-24 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 
GO:0044772 mitotic cell cycle phase transition 9.66E-24 UBE2C, TUBB, PLK1, TTK, MCM10, CDC6, NDC80, … 
GO:0044770 Cell cycle phase transition 3.77E-23 UBE2C, TUBB, PLK1, TTK, MCM10, CDC6, NDC80, … 
GO:0007049 Cell cycle 5.82E-23 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 
GO:0007067 mitotic nuclear division 4.28E-22 UBE2C, PLK1, NCAPG, TTK, KIF11, CDC6, RHOA, … 
GO:0010564 Regulation of cell cycle process 8.14E-21 UBE2C, PLK1, TTK, BRCA1, KIF11, CDC6, RHOA, … 
GO:0000075 Cell cycle checkpoint 2.37E-20 PLK1, TTK, BRCA1, CDC6, NDC80, AURKB, CCNA2, … 
GO:0000280 Nuclear division 1.70E-19 UBE2C, PLK1, NCAPG, TTK, KIF11, CDC6, RHOA, … 
Molecular function 
GO:0005515 Protein binding 2.71E-08 GSK3B, STX17, STX16, NCAPG, MCM10, TTK, BRCA1, … 
GO:0035639 Purine ribonucleoside triphosphate binding 2.87E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0032550 Purine ribonucleoside binding 3.10E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0032549 Ribonucleoside binding 3.18E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0001883 Purine nucleoside binding 3.18E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0001882 Nucleoside binding 3.37E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0032555 Purine ribonucleotide binding 4.12E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0017076 Purine nucleotide binding 4.59E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0032553 Ribonucleotide binding 4.70E-08 GSK3B, UBE2C, TUBB, PLK1, TTK, KIF11, CDC6, … 
GO:0004674 Protein serine/threonine kinase activity 5.55E-08 GSK3B, CCNB2, CCNB1, PLK1, CHEK1, PBK, CDK1, … 
Cellular component 
GO:0015630 microtubule cytoskeleton 1.04E-18 GSK3B, TUBB, PLK1, NCAPG, TTK, BRCA1, KIF11, … 
GO:0005856 Cytoskeleton 5.37E-15 GSK3B, NCAPG, TTK, BRCA1, KIF11, AURKB, CDC20, … 
GO:0044427 Chromosomal part 1.42E-14 PLK1, NCAPG, TTK, MCM10, BRCA1, NDC80, AURKB, … 
GO:0044430 Cytoskeletal part 2.93E-14 GSK3B, TUBB, PLK1, NCAPG, TTK, BRCA1, KIF11, … 
GO:0043228 Non-membrane-bounded organelle 3.89E-14 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 
GO:0043232 Intracellular non-membrane-bounded organelle 3.89E-14 GSK3B, NCAPG, MCM10, TTK, BRCA1, KIF11, … 
GO:0005694 Chromosome 1.20E-13 PLK1, NCAPG, TTK, MCM10, BRCA1, NDC80, AURKB, … 
GO:0005819 Spindle 9.41E-13 PLK1, TTK, KIF11, CDC6, AURKB, CDC20, TPX2, … 
GO:0044446 Intracellular organelle part 1.61E-12 GSK3B, STX17, STX16, NCAPG, MCM10, TTK, BRCA1, … 
GO:0005815 microtubule-organizing center 1.74E-12 GSK3B, PLK1, NCAPG, BRCA1, AURKB, CDC20, … 
KEGG    
hsa04110 Cell cycle 8.81E-20 GSK3B, PLK1, TTK, CDC6, CCNA2, CDC20, CCNB2, … 
hsa04115 p53 signaling pathway 1.41E-04 CCNB2, CCNB1, CHEK1, CDK1, TP53 
hsa05203 Viral carcinogenesis 1.42E-04 CCNA2, CDC20, CHEK1, CDK1, MAPK1, TP53, RHOA 
hsa04130 SNARE interactions in vesicular transport 0.008270639 STX17, STX16, SNAP29 
hsa04722 Neurotrophin signaling pathway 0.012342719 GSK3B, MAPK1, TP53, RHOA 
hsa04068 FoxO signaling  pathway 0.016591619 CCNB2, CCNB1, PLK1, MAPK1 
hsa05130 Pathogenic Escherichia coli infection 0.018014118 CDH1, TUBB, RHOA 
hsa05166 HTLV-I infection 0.018496934 CDC20, GSK3B, CHEK1, TP53, MAD2L1 
hsa04520 Adherens junction 0.033403027 CDH1, MAPK1, RHOA 
hsa04110 Cell cycle 8.81E-20 GSK3B, PLK1, TTK, CDC6, CCNA2, CDC20, CCNB2, … 
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Motif detection and generating motif-specific sub-networks  
The miRNA-gene, TF-Gene, miRNA-TF, TF-miRNA 

relationships were combined, and the regulatory net-
works were constructed. The up- and down-regulated 
gene networks contained 2250 and 2251 nodes, respec-
tively. The FANMOD software was used to detect the 
motifs. The types of identified motifs are represented 
in figure 4 for up- and down-regulated gene networks.  

We selected motifs with Z-score>2, p-value<0.05, 
and at least two-color edges (two types of interactions). 
Motifs with identification numbers 14, 78, and 164 
were finally selected in the up-regulated network. The 
sub-networks related to these motifs were merged to 
create a network, including 64 miRNAs, 53 genes, and 
321 TFs. The regulatory sub-networks were visualized 
by Cytoscape 3.5.1. (Figure 5A). Motifs No.78 and 164 
were selected and merged in the down-regulated net-
work to create a sub-network including 77 miRNAs, 
eight genes, and 274 TFs (Figure 5B). 

The topological analysis of up and down-regulated 
GRNs identified the BTG Anti-Proliferation Factor 2  
 

Table 5. Summary of four types of regulatory relationships among miRNA-gene, TF-Gene, miR-TF, and TF-
miR interactions 

 

Relationship Number of pairs Number of genes Number of TFs Number of miRNAs 
Up-regulated     

miRNA-gene 2103 52 - 1082 
miR-TF 5979 - 152 1445 
TF-Gene 1088 56 227 - 
TF-miR 2011 - 356 323 
Down-regulated     
miRNA-gene 2457 88 - 1027 
miR-TF 5862 - 133 1451 
TF-Gene 1558 87 209 - 
TF-miR 2008 - 354 320 

 
 

Figure 4. Regulatory motifs consist of miRNAs, TFs, and target genes detected in up and down-regulated gene networks with their Z-score and their 
p-value. Three types of relationships involved in these motifs included miRNA-gene (miRNA represses gene expression); miRNA-TF (miRNA re-
presses TF gene expression); and TF-miRNA (TF regulates miRNA expression). 

Figure 5. Regulatory sub-networks. A) The sub-network was gener-
ated by merging motifs No.14, 78, and 164 in the up-regulated gene 
network. B) Merging motifs No.78 and 164 in the down-regulated 
network. Pink diamond nodes are miRNAs, green circular show 
genes, and yellow rectangles represent the transcription factors. 
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(BTG2), Specificity Protein 1 (SP1), and TP53 as hub-
bottleneck, which were also present in up-regulated 
sub-network. However, none of the genes in the down-
regulated sub-network was among the GRN 10% of 
hub-bottlenecks. 

 

Gene ontology and biochemical pathway enrichment analy-
sis 

For Gene Ontology analysis, genes obtained from 
motif detection were submitted in the DAVID data-
base. The top 10 Biological process terms included 
regulation of cell death and the metabolic process, nu-
cleic acid-binding, transcription binding are top 10 in 
molecular function terms. The cellular components 
showed the nucleus and organelle as the top related to 
the gene-set. The significant pathways were identified 
from analysis of genes in motif-related sub-networks 
using the DAVID database. The significant pathways 
included the p53 signaling pathway, transcriptional 
misregulation in cancer, cell cycle, PI3K-Akt signaling 
pathway, viral carcinogenesis, viral infection, Measles, 
and FoxO signaling pathway (Table 6). Supplementary 
table S7 contains all gene ontology and KEGG path-
ways data related to the gene set. 

 
Discussion 

 

Breast cancer is the most common malignancy in 
women. Its molecular heterogeneity influences the se-
lection of methods in the effective treatment of this 
cancer 2. Treatment of routine surgery, radiation thera-
py, chemotherapy, stabilizing agents, enzyme inhibi-
tors, and immunotherapy are used to treat breast can-
cer. DXR is an effective chemotherapeutic drug of the 
anthracycline family used to treat breast cancer 50. A 
comprehensive understanding of the molecular mecha-
nisms of DXR in the treatment of breast cancer is still 
lacking 51. The systems biology approach and bioin-
formatical network analysis for breast cancer in re-
sponse to DXR help candidate essential genes and 
pathways mediating in response to this drug for further 
experimental examinations. The identified and validat-
ed targets and pathways may even be used to repurpose 
new drugs. 

Network-based approaches have recently appeared 
to be a powerful tool to investigate pathobiological 
processes and the molecular complexity of disease ae-
tiology by identifying disease-specific network clusters 
such as MCODE clusters in PPI networks. The nodes 
participating in these particular regions usually have 
critical roles and biological functions 52. Nodes partici-
pating in regulatory motifs also are of biological im-
portance in GRNs 53. We applied the MCODE clusters 
and GRN motifs to predict the molecular mechanisms 
underlying the treating effect of DXR on breast cancer 
and its side effects. This study selected genomics and 
proteomics data to integrate and explore critical genes 
and molecular pathways. The present study is the first 
in silico analysis that uses bioinformatics analysis to 

predict the essential genes and pathways of breast can-
cer treated with DXR and its side effects.  

Our systematic analysis of the PPI MCODE clusters 
and GRN motif-related sub-networks of the MCF7 cell 
line in response to DXR demonstrated that TP53, 
MCM10, and MCM3 are the top hub-bottlenecks and 
MCODE cluster seeds in response to DXR (Supple-
mentary table S8).  The functional enrichment analysis 
indicated that hub-bottleneck and cluster nodes were 
involved in the cell cycle, P53 signaling pathway, 
FoxO signaling pathway, and viral carcinogenesis.   

TP53 is a hub-bottleneck protein in our PPIN and 
GRN. TP53 is a gene with a high degree and between-
ness centrality over-expressed in the MCF-7 cell line in 
response to DXR. This protein can recognize DNA 
damage, stop the cell cycle at the G1/S regulation 
point, and activate DNA repair proteins. Therefore,  
 

TP53 can initiate apoptosis if DNA damage is irrepara-
ble 54. TP53 was up-regulated in MCF-7 cells treated 
with DXR. Therefore, it can be concluded that DXR 
activates the repair system and instigates apoptosis in 
cancer cells possible through P53 mediation.  

The Minichromosome Maintenance proteins (MCM) 
are critical regulators in DNA replication 55. These 
proteins are implicated in cancer initiation and progres-
sion, and their expression is up-regulated in a wide 
range of epithelial malignancies 56. MCM10, an MCM 
family member, is an essential factor for DNA replica-
tion by binding with Cell Division Cycle 45 (CDC45) 
and is essential in breast cancer progression 57. Alcivar 
AL et al reported that cells depleted of MCM10 show- 
 

ed instability of replication fork 58. Wei‐Dong Yang et 
al in 2019 showed MCM10 was significantly over-
expressed in breast carcinoma and involved in prolifer-
ation, migration, and invasion. Therefore, it can induce 
metastasis via the Wnt/β-catenin pathway in breast 
cancer 59. Our results identified MCM10 as a critical 
node in the network. Given the importance of this pro-
tein and the lack of experimental literature about its 
mediation in response to DXR, we suggest that its ex-
perimental investigation seems necessary.  

MCM3, another MCM member, is over-expressed 
in various human cancers 60. MCM3 is one of the cell 
cycle markers that regulates the growth, migration, and  
 

invasion of cells 61. Our study showed that MCM3 was 
also a down-regulated protein of importance in the 
networks. Therefore, we hypothesize that DXR can 
probably inhibit DNA replication, invasion, and metas-
tasis by down-regulating the MCM10 and MCM3 
genes. 

The functional enrichment analysis showed regula-
tion of the cell cycle, p53 signaling, viral carcinogene-
sis, Human T-Lymphotropic Virus type 1 (HTLV-1) 
infection, and FoxO signaling  pathway were the top  
 

terms related to hubs and bottlenecks in PPIN, 
MCODE clusters, and GRNs. Besides, Soluble N-
ethylmaleimide-sensitive factor Attachment protein  
 

https://www.researchgate.net/scientific-contributions/Wei-Dong-Yang-2156106369?_sg%5B0%5D=JdQFSGawT_ik9XEgqewQkBQ-z6lmcoSFQtGjPi7xiZidtSdwQO91R5-cQWv-rQ8DpgS5uoc.kT1M-owqDTXQ_2cidS-y_K0PFZWoqLqn2PzGbNdPO_RKR1nn58G8Hic1aYAtWpgUX6RyeiLrNkBmc0XwMFDzYg&_sg%5B1%5D=xxr77BluFj0wg-vfNmJ0QkqW4HoSjkG97IP4JntLQaWkLJcizQLOumY9BEM0xSLq2F2UmO8.Qlwbc918HJCh5M6KEHTTJGPHbAZXwzS_SC9Ty6w_NhifeBBC6GoqnYJHyq8RgFg5iLDGSbHE1Uxis1OEUdbD1g
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Receptor (SNARE) interactions in vesicular transport 
and neurotrophin signaling pathway were identified in 
our PPIN KEGG pathway results that could be related 
to side effects of DXR. 

Deregulation of the cell cycle is one of the mecha-
nisms involved in the malignant phenotype of cancer. 
Regulation of the cell cycle can be used as a therapeu-
tic targeting strategy against cancer 62. The chemother- 
 

Table 6. The table represents the top 10 biological processes, molecular function, cellular components, and KEGG pathways identified using the 
DAVID tool (sorted based on p-value<0.05) 

 

GO ID Terms p-value Genes 
Biological process   
GO:0010941 Regulation of cell death 4.37E-10 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 

GO:0010604 Positive regulation of macromolecule metabolic  
process 4.69E-10 FOXA1, KDM5B, CDKN1A, BTG2, CEBPB, … 

GO:0042981 Regulation of the apoptotic process 6.86E-10 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 
GO:0043067 Regulation of programmed cell death 8.18E-10 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 
GO:0008219 Cell death 2.29E-09 CDKN1A, BTG2, CEBPB, GLS2, GATA3, … 
GO:0009893 Positive regulation of the metabolic process 2.54E-09 FOXA1, KDM5B, CDKN1A, BTG2, CEBPB, … 
GO:0031325 Positive regulation of cellular metabolic process 1.09E-08 FOXA1, CDKN1A, BTG2, CEBPB, SRSF1, … 
GO:0012501 Programmed cell death 2.31E-08 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 
GO:0010628 Positive regulation of gene expression 2.33E-08 FOXA1, KDM5B, CEBPB, NFYC, SRSF1, … 
GO:0006915 Apoptotic process 4.17E-08 CDKN1A, TIGAR, BTG2, CEBPB, GADD45A, … 
Molecular function   

GO:0000982 Transcription factor activity, RNA polymerase II core 
promoter proximal region sequence-specific binding 1.27E-09 FOXA1, BTG2, CEBPB, NFYC, GATA3, … 

GO:0044212 Transcription regulatory region DNA binding 1.61E-09 FOXA1, PRMT5, CEBPB, GADD45A, NFYC, … 
GO:0000975 Regulatory region DNA binding 1.70E-09 FOXA1, PRMT5, CEBPB, GADD45A, NFYC, … 
GO:0001067 Regulatory region nucleic acid binding 1.73E-09 FOXA1, PRMT5, CEBPB, GADD45A, NFYC, … 

GO:0001228 
Transcriptional activator activity, RNA polymerase  
II transcription regulatory region sequence-specific 
binding 

9.84E-09 FOXA1, FOSL1, CEBPB, CREB1, MAF, MAFB, … 

GO:0000981 RNA polymerase II transcription factor activity,  
sequence-specific DNA binding 2.86E-08 FOXA1, BTG2, CEBPB, NFYC, GATA3, … 

GO:0000987 Core promoter proximal region sequence-specific 
DNA binding 4.26E-08 FOSL1, MUC1, CEBPB, CREB1, MAFB, SP1, … 

GO:0003690 Double-stranded DNA binding 4.45E-08 PRMT5, CEBPB, NFYC, XPC, GATA3, RUNX2, … 
GO:0001159 Core promoter proximal region DNA binding 4.50E-08 FOSL1, MUC1, CEBPB, CREB1, MAFB, SP1, … 

GO:0000976 Transcription regulatory region sequence-specific 
DNA binding 4.98E-08 PRMT5, CEBPB, NFYC, GATA3, RUNX2, … 

Cellular component   
GO:0070013 Intracellular organelle lumen 1.61E-06 FOXA1, KDM5B, CDKN1A, CEBPB, GLS2, … 
GO:0043233 Organelle lumen 2.34E-06 FOXA1, KDM5B, CDKN1A, CEBPB, GLS2, … 
GO:0031974 Membrane-enclosed lumen 3.13E-06 FOXA1, KDM5B, CDKN1A, CEBPB, GLS2, … 
GO:0005667 Transcription factor complex 7.01E-06 CEBPB, CREB1, MAFB, CDK4, NFYC, GATA3, … 
GO:0031981 Nuclear lumen 1.77E-05 FOXA1, KDM5B, CDKN1A, CEBPB, SRSF1, … 
GO:0000785 Chromatin 1.93E-05 MUC1, CEBPB, CREB1, MAF, SP1, CDK4, … 
GO:0005654 Nucleoplasm 2.81E-05 CTSA, KDM5B, PRMT5, CDKN1A, CEBPB, … 
GO:0044428 Nuclear part 3.71E-05 FOXA1, KDM5B, CDKN1A, CEBPB, SRSF1, … 
GO:0005634 Nucleus 5.48E-05 FOXA1, KDM5B, CDKN1A, CEBPB, SRSF1, … 
GO:0044422 Organelle part 2.45E-04 FOXA1, KDM5B, CDKN1A, CEBPB, SYNM, … 
KEGG    

hsa04115 p53 signaling pathway 2.01E-06 CDKN1A, ZMAT3, CDK4, GADD45A, MDM2, 
FAS, TP53 

hsa05202 Transcriptional misregulation in cancer 4.16E-05 CDKN1A, CEBPB, MAF, SP1, MDM2, TP53, 
RUNX2, PBX1 

hsa04110 Cell cycle 6.97E-04 CDKN1A, CDK4, GADD45A, PLK1, MDM2, TP53 

hsa04151 PI3K-Akt signaling pathway 0.013789 CDKN1A, CREB1, CDK4, MDM2, BRCA1, TP53, 
EPHA2 

hsa05166 HTLV-I infection 0.015101 FOSL1, CDKN1A, CREB1, CDK4, TP53, ATF3 
hsa05203 Viral carcinogenesis 0.030309 CDKN1A, CREB1, CDK4, MDM2, TP53 
hsa05162 Measles 0.041521 CDK4, FAS, TNFRSF10B, TP53 
hsa04068 FoxO signaling  pathway 0.042304 CDKN1A, GADD45A, PLK1, MDM2 
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apeutic agent DXR can cause cell arrest in the G1-
phase of the cell cycle 63. In addition, Kim HS et al in 
2009 reported that this drug could induce intracellular 
apoptotic signaling through up-regulation of Fas ex-
pression 64.  

Viral carcinogenesis and HTLV-1 infection were 
other pathways related to hubs and bottlenecks enrich-
ments. The virus has known oncogenic potential in 
specific cancers, including the cervix, liver, head and 
neck, some lymphomas, and breast cancer 65. HTLV-1 
is one of the viruses that encode oncogenic protein 
Tax1 Binding Protein 1 (TAX1) and help breast cancer 
progression 66. TAX1 protein can inactivate the func-
tion of cellular TP53 and postpone the G1 cell cycle 
arrest required for repairing DNA in response to DNA 
damage 67. DXR can induce apoptotic cell death in 
HTLV-1 infected cells 68.  

Our model identified that the P53 signaling pathway 
was a significantly enriched KEGG pathway related to 
hub-bottlenecks and MCODE clusters. McSweeney et 
al in 2019 reported TP53 as a critical regulator of tran-
scriptomic changes induced by DXR 69. Ru-Wei Lin et 
al in 2018 showed DXR-induced apoptosis in response 
to DNA damage by overexpression of TP53 70. In addi-
tion, p53 interferes in cell metabolism, ferroptosis, 
autophagy, and generation of ROS 71. These validate 
the predictions performed by our model and justify 
performing experimental examinations on its other 
findings. 

The FoxO signaling pathway was another identified 
signaling predicted by the model. FoxO transcription 
factors are tumor suppressors that mediate redox ho-
meostasis, proliferation, survival, and Phosphatidylino-
sitol-4,5-Bisphosphate 3-Kinase (PI3K) 72. Rosaline 
CY et al. reported that the cancer treatment with DXR 
increased FOXO3a activity 73. During apoptosis, 
FOXOs are involved in expressing death receptor lig-
ands such as Fas ligand, TNF, Bim, bNIP3, and Bcl-XL 
74. The enhanced FOXO3a activity increased the ex-
pression of ABCB1, a plasma membrane P-glycopro-
tein, which functions as an efflux for various anti-can-
cer agents 73. FOXO proteins play an essential role in 
glucose homeostasis by promoting gluconeogenic en-
zyme expression 75. The dysfunction of FoxO1 path-
ways involves several metabolic diseases, including 
atherosclerosis, diabetes, non-alcoholic fatty liver dis-
ease, and obesity 76. Notably, FOXO proteins are in-
volved in physiological processes. Activation and inhi-
bition of these proteins could have intolerable side ef-
fects. 

Other signaling pathways significantly enriched in 
our study were SNARE interactions in vesicular trans-
port and neurotrophin signaling pathway. SNAREs are 
a group of transmembrane proteins which create a 
bridge for interaction vesicle to its fusion partner. This 
vesicle trafficking is regulated by a separate process 
and stimulates the SNARE complex formation 77. The 
dysfunction of membrane trafficking is associated with 

cardiovascular events 78.  DXR disrupts the trafficking 
membrane by reducing Syntaxin 17 (STX17), Syntaxin 
16 (STX16), and Synaptosome Associated Protein 29 
(SNAP29) protein expression, thereby probably having 
side effects on the heart in this way. Besides, neurotro-
phins and their receptors are regulatory factors in heart 
and vascular development. These molecules regulate 
angiogenesis and vasculogenesis, controlling the sur-
vival of endothelial cells, vascular smooth muscle cells 
and cardiomyocytes 79. Therefore, DXR may lead to 
cardiotoxicity through dysfunction of the neurotrophin 
signaling pathway with a change in expression of Gly-
cogen Synthase Kinase 3 Beta (GSK3B), Mitogen-
Activated Protein Kinase 1 (MAPK1), TP53, and Ras 
Homolog Family Member A (RHOA) proteins. In ad-
dition, the SNARE complex is vital in the formation of 
vesicle fusion, vesicle recycling and neurotransmitter 
release. The defects in the formation of the SNARE 
complex, SNARE-dependent exocytosis, and SNARE-
mediated vesicle fusion are associated with neurologi-
cal diseases 80. 

Altogether we suggest that DXR regulates repair, 
apoptosis, invasion and metastasis of breast cancer 
cells. Its side effects are probably mediated by SNARE 
interactions in vesicular transport and neurotrophin 
signaling pathway and FoxO signaling pathway 
through up- and down-regulated genes primarily identi-
fied in our model. Further studies in vitro and in vivo 
are required to validate some of our novel findings. 
 

Conclusion 
 

This study applied a network-based approach (PPIN 
and GRN) to reveal the network hubs and bottlenecks 
and 3-nodes motifs consisting of TFs, miRNAs, and 
target genes underlying the DXR effect on breast can-
cer. We identified the molecular mechanisms and path-
ways mediating in response to DXR treatment. The 
hubs and bottlenecks of PPIN and GRN and PPIN 
MCODE clusters of differentially expressed genes in 
the MCF-7 cell line treated with DXR revealed that the 
essential biological processes and pathways are related 
to cell cycle, p53, viral carcinogenesis, and FoxO sig-
naling pathway. Besides, SNARE interactions in vesic-
ular transport and neurotrophin signaling pathway and 
FoxO signaling pathway were identified as pathways 
possibly mediating in its side effects. MCM10 and 
MCM3 were identified as essential DEGs mediating in 
response to DXR and are recommended for further 
investigations since their role is not studied sufficiently 
so far. We hope that our analysis results can understand 
the mechanisms involved in response to DXR and its 
side effects and help design further experimental inves-
tigations. 
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Supplementary 

Supplementary Table S1. Up/Down-regulated proteins are represented below 
 

Up regulated  Down regulated  Up regulated Down regulated  Up regulated Down regulated 
BTG2 ESPL1  CAT  DLGAP5   ZFR  
GDF15 E2F8  TP53I3  RAD51AP1   PBRM1  
WISP2 ORC3  CCS  MKI67   NKRF  
HIC2 TPX2  PML  DTL   PRDM15  
TIGAR GPSM2  PRKD1  PAICS   ZFP2  
EPHA2 CCNB1  PXN  MPHOSPH9   TTC5 
ATF3 BRCA1  HBA2  MCM6   C17orf49  
FAS BIRC5  LIG1  CENPI   ZBTB9  
TAP1 PLK1  CDK1  CCNF   HIST2H2AB  
XPC ST8SIA4  PRKAA1  SLC25A12   YY2  
NADSYN1 TUBB  ASNS  KIF20A   HIST2H3D  
KRT15 CHEK1  CDH1  TTK   RFX8  
MOSPD1 MUC1  CDK4  CDKN3   CREB1  
STOM KIF11  CDKN1A  NCAPG   PNKP  
YPEL5 SKP2  MPST  CENPF   PURB  
AVPI1 ORC1  SCFD1  AKAP8    NABP2  
DPYSL4 CDC6  HMGCL  PES1    TAF2  
GM2A ZWILCH  SMARCA5  H2AF   TAF7  
DUSP1 DBF4  FOXD4L1  MKI67IP    MTA2  
WSB1 KIF14  MSH2  CSNK1A1    HOXC11  
PHYH MAD2L1  SRSF1  PPP1CC    HOXD10  
ZMAT3 POLA1  GNA13  BUB3    ALX1  
LIMK2 AURKB  PITPNB  NDE1    MYBBP1A  
TP53I3 MCM3  TANC2 ERCC6L    VSX1 
AK1 TIPIN  EPN1  SPC24    POLE4  
PSG9 C17orf75  MBD3  NUP43    STX16  
EPPK1 KIF4A  RIC8A  LIG3    SNAP29  
TMEM158 BARD1  GRSF1  NSMCE2    STX17  
GADD45A MCM10  AMBRA1  PARP1    TLK1  
MDM2 FBXO5  PPP1R13L  BCL3    HIRIP3  
TRAF4 MELK  MLL  CCNT1    ASF1B  
CSAD CDC20  POU4F3  DNA2    ACTL6A  
SLC6A8 GART  PRKRA  ENO1    SUPT4H1  
TNFRSF10B NDC80  RUNX2  GATA3    LEO1  
ARFGAP3 CCNA2  DLG1  GTF2A1    MRGBP  
MAFB GTSE1  ALB  H1F0    UTP3  
CABYR BUB1  GSTK1 HIST1H1E    SRPK1  
CDKN1A PBK  PRDX4 HIST1H1B    BRD8  
MORC4 DEPDC1  SNAPIN  HMGN1    PRMT5  
MAF NCAPH  DTNBP1  AGFG1    PYGO2  
FDXR MDC1  SLC6A17  MCM3    GPI  
PIDD1 PFAS  TRIM37  NFYB    C3  
GPR87 HNRNPD  CHP1  PBX1    MTPN  
ACTA2 CENPE  PYCARD  POLR2C    OGDH  
ANXA4 ASPM  NR3C2 MAPK1    HPRT1  
SYNM UBE2S  NFYC  RFC2    MYCBP2  
CYFIP2 LMNB1  ZNF24  RPL6    MAP2  
FOSL1 PRIM1  MTA1  SMARCA1    ANXA1  
PDE4A CDCA3  ZGPAT  SMARCC1    RYK  
GLS2 ATAD2  ARX SP100    UACA  
SAT1 BRIP1  FOSL2  SURF6    CD276  
GABPA  STIL  NUP93  BRPF1    CTNNA2  
TP53  UBE2C  NUP153  DEK    MYO1D  
CEBPB  CCNB2  NUP107  KDM5D    DDN  
FOXA1  MCM7  GSK3A  ARID1A    LIMS1  
SP1  PRC1  GSK3B  HIST2H2AC   RHOA  
ANK3  CDT1  PREP  NCOR2    LTBP2  
GOLGA4  CDC45  CTSA BCLAF1    PPM1A  
ARFRP1  GEMIN2  SCPEP1  TOX4    PPP1CB  
MACF1  SPC25  ARHGEF2 SRA1    UBA52  
NQO1  WDHD1   HUWE1    SNX6  
NUDT1  MCM2   PQBP1    ANKRD17  
NDUFS8  DUT   SRRM1   
RRM2B  KIF18A   KDM5B   
NAPRT1  KIF15   AKAP8L  
SRXN1  MSH2   NUSAP1   
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Supplementary Table S2. Hubs and bottlenecks (top 10%) related to PPI 
network obtained by Cytoscape software 
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Supplementary Table S3. Each column represents proteins available in one 
MCODE cluster 

 

Subnetwork 1 Subnetwork 2 Subnetwork 3 
CDC45 ASF1B GTF2A1 

TTK PRIM1 NAPRT 
MELK PPP1CC GM2A 
BUB1 MCM3 C3 

CCNB2 ORC1 PBRM1 
DLGAP5 MCM7 MAPK1 

KIF15 ZWILCH TUBB 
KIF20A NDE1 PARP1 
CDKN3 ERCC6L HIST2H2AC 
CDCA3 NUP43 ARID1A 
KIF14 CDT1 SMARCC1 
BIRC5 SPC24 BARD1 
MKI67 CENPI ACTL6A 
KIF11 NUP107 LIG3 
DTL BUB3 PRMT5 
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Supplementary Figure S1. Venn diagram for DEGs of GEO datasets (GSE124597, GSE39870, and GSE13477) related to MCF-7 cell line treated with 
doxorubicin. A) Venn diagram related to up-regulated genes B) Venn diagram related to down-regulated genes. 
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